
Technical Report
An Intelligent Secure Kernel Framework for Next Generation Mobile

Computing Devices

(ISKMCD)

“A Survey on Recent Advances in Malicious Applicat ions Analysis and Detect ion Techniques for Smartphones”

Dec 12, 2012

National University of Computer & Emerging Sciences, Islamabad, Pakistan

TR-nexGINRC-2012-65

Copyright © nexGIN RC, 2012. All rights reserved.

Reproduction or reuse, in any form, without the explicit
written consent of nexGIN RC is strictly prohibited.

A Survey on Recent Advances in Malicious

Applications Analysis and Detection Techniques for

Smartphones

Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

Smartphones are becoming the core delivery platform of ubiquitous “connected customer services”
paradigm; as a consequence, they are attractive targets of malicious intruders (or imposters).
Researchers have realized that classical signature-based anti-malware techniques are not capa-
ble of providing e�cient and e↵ective detection tools against novel, zero-day and polymorphic
malware for resource constrained smartphones; therefore, in last couple of years unconventional
(non-signature) intelligent solutions, based on behavioral analysis (static or dynamic) have been
proposed. In this survey article, we provide an overview of the recently proposed static and dy-
namic malicious application detection techniques for smartphones. The survey provides relative
merits (or demerits) of each technique that would enable security researchers and practitioners to
propose next generation security solutions and tools for smartphones.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection; K.6.5
[Management of Computing and Information Systems]: Security and Protection

General Terms: Security

Additional Key Words and Phrases: Smartphone, Malware, Static analysis, Dynamic analysis,
Privacy Leaks, Tools and techniques

1. INTRODUCTION

Recently, mobile hand held devices, including smartphones and tablets, are having
the same computing power as that of the desktop computers of the last decade of
the previous century. As a result, the smartphones have integrated as an essential
enabler for accessing “connected services” in a ubiquitous manner. Smartphones
are now enabling customers to access m-government services, to stay connected
with the family and friends on the social media, to do electronic transactions and
e-commerce, to participate in audio/video live streaming conferences, to remotely
attend e-learning classes and to diagnose and monitor patients in an e-health (or m-
health) environment. As a consequence, the number of users of smartphones have
exponentially grown globally. In a recent survey of Gartner Research conducted
in 2011 (4th quarter), the smartphone market grew by 47% as compared to 2010
(4th quarter) [1]. In the beginning of 2012, mobile phones market has reached

Authors’ address: Next Generation Intelligent Networks Research Center (nexGIN RC), FAST
National University of Computer and Emerging Sciences, A.K. Brohi Road, H-11/4, Islamabad,
44000, Pakistan.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c� 2012 ACM 1529-3785/2012/0700-0001 $5.00

ACM Computing Surveys, Vol. -, No. -, November 2012, Pages 1–0??.

2 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

419.1 million units, out of which 144.3 million are smartphones [2]. Mobile phone
market is anticipated to reach 645 million till the end of 2012 which will surpass the
number of personal computers worldwide [2]. Google’s Android based smartphones
dominate the market with a maximum of 64.1% overall share, while Apple’s iOS
based smartphone have 18.8% share in the second quarter of 2012 [3]. In Table I,
we have summarized the share of di↵erent smartphones that dominate the market.
In another report by Kaspersky Lab [4], 16% of smartphone users store and transfer
private documents from their smartphones, 53% use smartphones to send or receive
emails, and 47% stay connected on the social networks (Facebook, Twitter etc.)
using their phones. Typically, 62% of smartphone users browse the Internet using
their smartphones. The top security o�cials at Symantec and Mcafee confirm [5]
that the increased market share of smartphones have made them an ideal target
for hackers and malicious software writers. They are now shifting their focus on
smartphones instead of desktop computers.

The major security vendors have recently reported an alarming rise in the mal-
ware attacks on smartphones. These malicious applications1 are a source of serious
concern for two reasons: (1) they have the ability to take control of the phone
and perform unauthorized activities in a stealthy (unnoticed) manner; and (2) they
can access a user’s private information and leak/sell it to his adversary or di↵erent
advertising agencies. In the “mobile threat report 2011” by Juniper Networks Inc.
[6], the overall growth for all mobile operating systems, in their malware sample
database, during 2011 was 61%. In case of Android, the malware samples increased
from 400 to 13302 (an increase of 3325%) during the last seven months of 2011.
The distribution of malware samples for di↵erent operating systems in 2010 was:
JavaMe:70.3%, Windows Mobile:1.4%, Symbian:27.4%, BlackBerry:0.4%, and An-
droid:0.4%. In comparison, the unique malware samples collected in 2011 show a
totally di↵erent distribution: JavaMe 41%, Windows Mobile 0.7%, Symbian 11.5%,
BlackBerry 0.2% and Android 46.7%. To conclude, the number of threats on An-
droid OS have significantly increased. The report also provides a taxonomy of the
malware observed in 2011: 63.39% are Spyware, 36.43% are SMS Trojan, 0.09%
are SMS-Flooder, and 0.09% are Worms. On Android platform, fake installers are
the biggest infection vector (56% of the total threats). The Internet threat re-
port of Symantec Corporation [7] also confirms a dramatic increase in smartphone
malware. Their analysts have categorized the malware on the basis of function-
ality and potential risks: 28% malware are data collection applications, 24% send
smartphone stolen contents to the remote hosts, 25% are used for location tracking,
7% change the device settings and 16% are traditional threats (virus and worms
etc.). F-Secure Labs in their mobile threats report 2012 [8] report that only 10 new
malware families (along with their variants) were known by the beginning of 2011.
Only within a year, 37 new malware families and their variants have been discov-
ered. They report that malware writers are exploring new infection vectors and are
focusing on evading malware detection techniques. Take the example of already
known malware families – DroidKungFu, GinMaster, and Fakeinst umbrella – that
are using cryptography and randomization techniques for evasion. Malware writers
have also used images to hide the malicious code in them e.g. FakeRegSMS. Fur-

1We will use the terms malware and malicious applications interchangeably in this paper.

ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 3

thermore, they report that profit motivated threats (34%) are significantly higher
as compared to non-profit threats (15%). A sixfold increase in malicious applica-
tions (175,000 in September compared with 30,000 in June) has been reported on
Android platform in the third quarter of 2012 [9].

The exponential increase in malware on smartphones has started an anti-malware
product race within security vendors worldwide. Most of them have enhanced their
signature based anti-virus products [10] for smartphones. As a result, the phones
are protected against malware whose signatures exist in the database. Malware
forensic experts analyze malware and generate signatures that are inserted into
the threats databases. The antivirus applications on an end user’s phone use the
(malware) signature databases to detect malware. The process of creating a mal-
ware signature on the basis of the domain knowledge of a forensic expert is time
consuming, challenging and error-prone. The true challenge for them is: to cre-
ate a generic signature to achieve 0% false alarm rate (it should be able to detect
mutated variants of the same malware and moreover it should not detect legiti-
mate programs as malware). Malware writers typically release their malware in
families consisting of multiple variants of a single malware having minor changes
in functionality, structure and/or code. Every week, the security vendors mostly
receive a large number of malware variants out of them only few dozens are new
malware families [11]; therefore, the capability to automate the process of malware
analysis and detection is gaining momentum. Broadly speaking, malware analysis
and detection techniques for smartphones can be categorized into two classes: (1)
static detection techniques, and (2) dynamic detection techniques. Static analysis
is performed on the disassembled binary files without executing the malware. On
the other hand, dynamic analysis is performed by monitoring the malware and/or
its e↵ects on a system during or after execution of the malware.

The major contributions of this survey paper are:

(1) Focusing on niche and state-of-the-art malicious applications detection tech-
niques for smartphone platforms.2

(2) Formulating a generic detection framework for malicious applications that will
be used as an architecture guideline for mapping (or understanding) existing
anti-malware security products.

(3) Discussing the emerging and new (recently proposed) detection techniques that

2The most of existing survey papers lack comprehensive treatment on mobile malware and instead
focus broader smartphone security.

Table I. Market Share of Smartphone Operating Systems (thousands of units)

OS 2ndQuarter 12 2ndQuarter 11
Units Market Share (%) Units Market Share (%)

Android 98,529.30 64.1 46,775.90 43.4
iOS 28,935.00 18.8 19,628.80 18.2

Symbian 9,071.50 5.9 23,853.20 22.1
RIM 7,991.20 5.2 12,652.30 11.7
Bada 4,208.80 2.7 2,055.80 1.9

Microsoft 4,087.00 2.7 1,723.80 1.6
Others 863.3 0.6 1,050.60 1
Total 153,686.10 100 107,740.40 100

ACM Computing Surveys, Vol. -, No. -, November 2012.

4 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

are used by smartphone security and privacy analysts.
(4) Surveying (at length) recently proposed tools – using the above-mentioned tech-

niques – with an aim to understand their relative merits and shortcomings.

The rest of the paper is organized as follows. In Section 2, we enumerate various
types of malicious applications and the infection vectors they exploit on smart-
phones. In order to develop detection techniques, it is relevant to understand the
important challenges; therefore, we enumerate them in Sections 3 and 4. In Section
5, we present a generic detection framework for mobile malware. The framework
augments the system wide understanding of malware analysis and detection tech-
niques. We also present, analyze and categorize the latest published techniques for
static and dynamic malware detection on smartphones in Section 6 and Section 7
respectively. In Section 8, we describe and review the recently developed malware
detection frameworks and tools that utilize these techniques. The related work is
presented in Section 11. Finally, we conclude the paper with an outlook towards
the future directions of detecting mobile malware.

2. MALICIOUS APPLICATIONS

In this section, we describe the types of malicious applications that have plagued
the smartphone systems over the last few years. We also enumerate the commonly
used methodologies and typical infection vectors utilized for spreading malware
infections to new (uninfected) smartphones.

2.1 Types of Smartphone Malicious Applications

In order to make the paper self contained, we provide a brief overview of di↵erent
types of malicious applications in this section. An interested reader can refer to [12]
[13][14][15][16][17] for an in-depth discussion on smartphone malicious applications.

A malicious code that usually spreads by exploiting vulnerabilities in the network
services is termed as a worm. The worms usually run as independent executables
and make copies of themselves on the networked machines. The oldest known
worm is the famous Morris worm [17]. On smartphones, the first known worm
Caribe (Worm.SymbOS.Cabir) was released in June 2004 [18]. Other notable worms
include iOS Ikee Worm [19] and Commwarrior [20].

Viruses infect normal processes on a system and use them to execute their ma-
licious code. They usually spread through sharing of infected programs. Duts [21]
is one of the well known viruses for smartphones.

Trojan Horses pose themselves as legitimate and productive applications and
they execute their malicious codes in the background without user’s knowledge.
They often spread by infecting other programs on the new system, and are of-
ten used as a gateway for installing additional malware on the infected system.
Most malware for smartphones are trojans. Some well known trojan horses include
Trojan-SMS AndroidOS.FakePlayer [22], ZeuS Trojan [23], Trojan-SMS Androi-
dOS.Foncy [24] and Skull.D [25].

Spyware present themselves as useful programs but their primary objective is to
steal sensitive information about a user such as passwords, emails, user surfing be-
havior, credit card information etc. Some notable spyware include GPSSMSSpy and
Nickyspy [12]. It is important to realize that most of mobile malware writers focus
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 5

on stealing a user’s private information and use it to characterize her/his behavior
in order to spam her/him with relevant advertisements. In 2011 alone, 63.39% of
mobile malware were Spyware[6]. As a consequence, protecting a user’s privacy and
detecting malicious applications have become synonymous in the security jargon.

Sometimes the primary purpose of an attacker is to get a large number of com-
puting resources at her/his disposal. This is usually achieved by a specific type
of malware known as Bot. Bots (infected computers) dial home to a master bot
that then controls all the bots and issues commands to them. The whole network
of bots and master bot is known as botnet. Typical uses of botnets include denial
of service attacks, spamming, fraudulent activities etc. Anserverbot, Nickybot and
Beanbot [12] are representative malware of this category.

A rootkit hides a malicious application on a system by modifying a system’s
kernel such that the system API calls are instrumented (the logging and other
similar operation binaries are replaced) [26]. TDL, ZeroAccess [27], ITFUNZ and
Z4Mod [28] are examples of rootkits infecting mobile devices.

It is important for a hacker to ensure access to a hacked system even if the present
vulnerability is patched in the future. Backdoors serve exactly this purpose. The
presence of a backdoor allows unauthorized access to a system that enables a remote
attacker to run commands on the system, usually by opening a port and waiting
for an attacker to connect. BaseBridge-C, FAKE Angry and KMin on Android [28]
and ZTE Score M and ZTE Skate mobile phones have been known to contain such
backdoors [27].

Modern malicious application writers have established an underground malware
mafia industry to quickly accumulate wealth. URL injectors replace actual search
results and web links in a user’s browser with alternate links, webpages and sales
pages that transfer revenue to the malware author or her/his associates. Adware
programs usually display ads and pop ups trying to force a user to click on them
and buy the products being advertised using a�liate accounts. A�liate advertising
brings in money for the malware writer. SslCrypt on Symbian OS [29] and Toplank
(Counterclank) [30], Plankton [28] are examples of adware. Some malware appli-
cations (Money Stealers) perform money sending actions such as sending premium
SMS messages to a malware author or her/his associates account without user’s
consent. Foncy on Android [24] is one such example. A collection of latest malware
applications for Andorid, iPhone and Symbian platforms is available on the website
www.contagiodump.blogspot.com.

2.2 Infection Vectors & Methodologies

To protect malware infections, it is important to understand how malicious appli-
cations infect a smartphone and spread it to other systems. We now introduce the
most important infection vectors for smartphones only.

The major source of automated infection spreading are exploitable vulnerabilities
in applications that listen to network tra�c or process incoming tra�c. Malicious
applications writers can automate the process of exploitation for such scenarios;
as a result, infection spreads very quickly in a short time (specially) when the
vulnerable services are common across many systems on the Internet. This infection
methodology is utilized by worms.

When a user is browsing the Internet, malicious websites can exploit vulnerabil-
ACM Computing Surveys, Vol. -, No. -, November 2012.

6 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

ities in her/his browser to download and install malicious code on her/his machine
without her/his consent [6]. A user doesn’t necessarily need to visit malicious web-
sites for such attacks. The techniques – cross site scripting (XSS), clickjacking,
script injection and iframe injection – are typically used by attackers to spread
malicious code to the visitors of innocuous websites. This methodology is usually
coupled with social engineering exploits to trick a user to go to the malicious website
and become infected.

Social Engineering techniques use (or misuse) a user’s trust paradigm or naivety
to entice him/her into actions that make it possible for a malicious application to
do the malicious activity. For example, a link in an email from a coworker’s email
address could actually lead to a malicious website that installs malicious code on
a user’s system. In early days of Internet, emails and chat messengers were the
primary technologies used for such attacks. With the evolution of social networks,
expanded online social circles, interaction with strangers and user provided con-
tent publication, novel social engineering attacks are becoming straightforward. A
tweet on a famous hashtag with a malicious link and a promise of never-seen-before
video of a celebrity is all it takes nowadays to entice thousands (if not millions) of
susceptible users to download and install a video plug-in that is actually a trojan.

Vulnerabilities in the operating system allow an un-privileged program to gain
enough privileges to infect the entire system, including the operating system files,
and the directories of other users; as a result, infection spreads to all users of the
machine. Removable Media such as SSD cards may contain infected files which
may execute when the removable media is connected to the system. The malware
on the infected system tries to copy itself to the new removable media devices and
thus spread further. On a network with shared resources such as shared file servers,
email clients etc., the malware can spread by copying itself to writable locations
(or infecting executable files existing there), and then infecting the systems of the
users who access those resources.

Smartphone platforms usually allow access to various protected system resources
using a permission model. Over-privileged smartphone applications can become an
important infection vector that can allow an application to leak private information
or execute tasks not authorized by the user. It is also possible that another malicious
application can use a legitimate privileged application as a deputy for an attack if
the legitimate application provides an open interface for invocation. This can lead
to privilege escalation attacks as well.

An attacker can setup rogue public WiFi access points, luring users to enjoy
free Internet access [6]. By pointing to a rogue DNS server controlled by the
attacker, the users can be redirected to malicious websites which can infect the
system through drive-by download methodology described earlier. Bluetooth and
MMS functionalities are ubiquitous. Bluetooth [31] connections and MMS have
the capability to help a malware leverage the system vulnerabilities to install itself
on the system. Commwarrior [20] is an example of malware that spreads through
MMS messages.

Some mobile platforms (e.g. Android) support open application distribution
architecture. A user can download applications from virtually any place on the
Internet without the need of getting them signed from a competent authority. The
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 7

systems with open architecture are highly susceptible to rogue application distri-
bution sites that trick users to download rogue applications and install them [6].

3. CHALLENGES FOR MALICIOUS APPLICATIONS ANALYSIS & DETECTION

After discussing the common types of malicious applications and relevant infection
vectors that help in propagation of the malware, we now list a number of challenges
that are faced by security experts working on designing detection frameworks for
malicious applications.

3.1 Generic Challenges for Malicious Applications Detection

We first present the challenges for malicious applications detection that are common
to both desktop and mobile operating systems.

Packers. Malware try to evade static detection using packers [12][32]. Packing
involves either compression or encryption (or both) of binary executables. This
compressed and encrypted image is loaded at runtime to perform malicious oper-
ations. Static malware detection schemes – like n-gram analysis – usually fail to
correlate the packed malicious binary as malware because their content patterns
are significantly altered during the packing process.

Polymorphic malware. Polymorphic malware [32] are similar to packed malware
because it contains an encrypted malicious payload and a decryption routine. How-
ever, unlike packers, polymorphic malware try to evade detection by re-encrypting
its contents, using a di↵erent key, every time it executes.

Metamorphic malware. Metamorphic malware modify their code by rewriting
themselves on each infection [32] that makes their detection a challenge. The com-
mon techniques used to transform the code are: (1) register renaming (using dif-
ferent CPU registers in instructions); (2) code permutation (intelligently ordering
instructions to preserve the semantic outcome/result); (3) code expansion (using
more instructions to do the same thing); and (4) code compression and garbage
code insertion (such as adding NOPs). Dynamic detection of such malware, using
advanced virtualization techniques, yield better detection results.

System Performance Degradation. Processing overheads are more important
during dynamic detection because they directly contribute towards deteriorating
completion time of processes and this may have severe consequences especially for
time-critical realtime processes.

Detection delay. A detection scheme should have low detection delay for a bet-
ter user experience. Similarly, the memory cost of maintaining detection data
structures should be within acceptable limits on resource constrained smartphones.
Early detection of an executing malware is a challenge because delay might lead to
an infected system that might end up in an unrecoverable state. To mitigate this,
security solutions keep a log of runtime changes done on the memory and disk, and
used rollback mechanisms to undo these changes (disinfection) after detection.

High False Alarm Rate. A malware detection system should ideally have a zero
false alarm rate; otherwise, frequent false prompts that ask users to quarantine
benign programs will add to the frustration of normal users and they might be
tempted to turn o↵ the detection system completely.

Low Detection Rate. In order to ensure a nearly zero false alarm rate, dynamic
detection techniques typically increase the threshold of confidence on the basis of

ACM Computing Surveys, Vol. -, No. -, November 2012.

8 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

which a program is declared as malware; as a result, detection rate is degraded that
might leave a user vulnerable to attacks.

Robustness to Evasion. Crafty malware writers can attempt to evade the ma-
licious application detection systems. Evasion is possible when malicious appli-
cations can reproduce a feature set that is similar to the feature set produced by
legitimate applications. This is a significant challenge for security researchers. Most
of dynamic analysis techniques tend to detect a process’s behavior by analyzing its
behavior in the kernel space of an operating system; therefore, malware try to hide
themselves through mimicry of behavior of benign processes. For example, if a
dynamic detection scheme monitors pattern of API calls made by the processes, a
malware process can try to intersperse its own API calls within sets of benign API
calls to evade detection.

3.2 Additional Challenges for Smartphone Platforms

After introducing the detection challenges for malware detection techniques, we
now focus our attention to challenges that are relevant to smartphones only.

Battery Constraints. Battery is one of the most important resources on smart-
phones; therefore, any malware detection solution should use it carefully to provide
users with enhanced connected times without the need to frequently recharge.

Limited processing power. Detection algorithms should be simple, having rela-
tively small processing complexity, so that they can execute (without degrading a
user’s experience) on mobile processors. It is advisable to compromise accuracy for
complexity.

Limited Memory. Memory is an expensive resource on a smartphone and detec-
tion algorithms should use it in an optimized manner.

Processors architecture Issues. Smartphones typically use processors with low
power footprint (like ARM) to conserve battery. It is, therefore, imperative that
the detection techniques should ensure that their framework is not tightly coupled
with processor specific features.

4. IMPLEMENTATION DECISIONS

In this section, we introduce the design spectrum for malicious applications detec-
tion frameworks. A malware detection scheme can plug and play di↵erent design
options to create a customized detection engine.

4.1 Host-based vs Decoupled Security

The malware analysis and detection process can take place at three points: (1)
entirely on a smartphone; (2) partially on a smartphone and partially on a remote
server; or (3) entirely on a remote server. The process of delegating security away
from a smartphone is known as decoupled security.

A designer needs to make an informed choice by critically reviewing merits and
demerits of each option. For example, a family of smartphones might be having
limited memory, processing and battery resources; therefore, it is prudent to move
compute-intensive behavioral analysis and pattern matching computations to a re-
mote server. But sending a program to a remote server can take more time and
Internet bandwidth (might be expensive in 3G networks). This can eventually load
a central server that results in a degraded user experience. To conclude, a logical
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 9

compromise is: to do simple analysis on a smartphone and to delegate compute-
intensive calculations to a remote server that might be located in a cloud. Jupiter
[33] provides an environment that augments smartphone environments with the
cloud computing.

4.2 User space vs Kernel space

The malware detection system can run either in the user space or in the kernel space.
For user space implementation, it is necessary that a smartphone operating system
provides necessary APIs for collecting the required features (information) about
the processes that are running on the system. In comparison, an implementation
in the kernel space provides more flexibility because the behavioral information is
collected by hooking the kernel functions and monitoring the kernel structures. In
terms of man machine hours, a user space implementation takes less e↵ort compared
with the kernel space implementation albeit it is less sophisticated and accurate.

One should remain cognizant of the fact that malware can easily detect a user
space program that attaches hook to it; as a result, it refrains from doing malicious
activity to avoid detection.

4.3 Actual System vs Sandboxing/Emulation

The program (under analysis) can either be run on an actual smartphone with
normal privileges and restrictions as that of a trusted program, or it can be run
in a sandboxed or emulated environment for analysis. Sandboxing provides a con-
fined operating environment with a security policy that restricts the actions that
an application can perform. Emulation means imitating the actual operating en-
vironment for an application. The purpose of sandboxing/emulation is to analyze
the behavior of a program without endangering the actual operating system.

Sandboxing is sometimes implemented by the operating system of a smartphone.
The second option is to install third party sandboxing tools for smartphones. The
third option is to use the concept of decoupled security and execute the program
(under analysis) on a remote server within an emulator. Sandboxing can be done
either in user space or in kernel space. Both of them su↵er from the same merits and
demerits as already discussed for user and kernel space malware detection systems.

The sandbox is configured to intercept and log the changes made to a system
by an executing program. The objective is to log a number of features such as
system and API calls, changes to a filesystem, resource utilization, network activity,
battery drainage and other parameters of a system that define the system’s health
and responsiveness.

A program is installed in a sandbox environment. The system maintains a log of
changing features during its execution. The programs on smartphones are mostly
interactive; therefore, a simulated user input is required for automatic analysis of
the sandboxed programs. The programs such as Android’s Monkey3 tool allows
simulating random user events at di↵erent intervals. By simulating user events, a
program’s behavior in response to the user events is logged. The log of features can
be used for dynamic malware detection (during or after execution) by employing
techniques like function call monitoring, power utilization, behavioral analysis etc.

3Monkey tool can be executed on an Android OS by the command: $adb shell monkey

ACM Computing Surveys, Vol. -, No. -, November 2012.

10 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

4.4 Static Detection vs Dynamic Detection vs Hybrid Detection

Analysis to detect malicious applications can be performed in two di↵erent ways
[34]. Static detection is performed before a file is executed, using the features
set extracted from an executable file. Dynamic detection, on the other hand, is
performed during or after the execution of a program (usually in an isolated en-
vironment). Static detection is relatively quicker and inexpensive, and it doesn’t
require execution of the application; but, it is easier to evade. Dynamic detection
systems degrades the performance of a system because of the associated processing
overheads. A detection system for malicious applications can be either static or
dynamic or a hybrid of both approaches. A hybrid system combines the benefit of
early detection of static analysis with the robustness benefit of dynamic systems
against evasion attempts.

4.5 One Class (Anomaly Detection) vs Two Class Classification

The basic purpose of a detection system is to classify a given program as benign
or malicious; therefore, detection can be treated as a two class problem. But,
using anomaly detection systems, it can be treated as one class – the system learns
the normal behavior of a program and any deviation, measured with information-
theoretic distance measures, from normal is classified as malicious (also known as
outlier detection). The anomaly detection can be based on statistical measures
(e.g. mean, variance), distance measures (e.g. nearest neighbor, clustering) or
models/profiles.

The anomaly/outlier detection is more suitable when it is di�cult to get adequate
number of unique samples of one class (e.g. malicious). However, for doing anomaly
detection, the complete picture of one class behavior is needed to train a classifier
(a daunting task in itself). If large samples of both classes are readily available
(e.g. Android, Symbian OS), two class classification makes more sense. On the
other hand, anomaly detection is a more logical approach for operating systems
with limited number of malicious applications (e.g. iOS, Windows Mobile).

To summarize, we have introduced malicious applications types, common infec-
tion vectors, design challenges and implementation decisions to be taken in building
intelligent malicious applications detection frameworks. Armed with this knowl-
edge, we now focus on a generic framework to design and develop detection systems
for malicious applications on smartphones.

5. GENERIC MALICIOUS APPLICATIONS DETECTION FRAMEWORK FOR MO-
BILE COMPUTING DEVICES

In this section, we introduce a hybrid security framework for detection of malicious
applications (causing security threats and privacy leaks) on smartphones. This
framework provides a cohesive view of two paradigms (i.e. static and dynamic
detection). Moreover, it serves as a common abstract framework through which
di↵erent instances (by selecting suitable modules) can be instantiated. As a result,
it becomes a blueprint for designing future security solutions for detecting malicious
applications. Last but not least, it acts as a reference framework for comparing
implementations of di↵erent solutions, their merits, demerits and performance.

Static and dynamic analysis techniques usually share some common archetypes.
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 11

Static Analysis & Detection

Feature Processing Agent

New
Process

File
Scanning
Agent Reverse Engg,

Code Patterns
Disassembly,
function calls

Feature SelectionForensic analysis Information theoretic measures n-gram analysis API correlation

Classification Agent

Bio-InspiredMachine learning Clustering Control Flow
Graphs

Support Vector
Machines

Privacy Leak
detectors

Decision:
Malicious?

Dynamic Analysis & Detection

Start Execution

Spatio-temporal Processing Agent

Process &
System
Monitor IPC Monitoring &

Authentication
Battery Util.

Patterns

Statistical analysisShortlisting Information theoretic measures Timeseries analysis Correlation of security
policies & permissions

Classification & Prediction Agent

Machine learning Clustering Control Flow
Graphs

Support Vector
Machines

Runtime Monitors for
permission & app activities

Decision:
Malicious?

Finish Execution

Time series PCB
Features

System & Func.
calls Logging

Runtime Taint
Analysis

System
Performance

Cloud

Host
vs

Cloud
Host

vs

Virtual Layer vs Operation System vsuser
kernel

Fig. 1. Proposed generic malicious applications (security threats & privacy leaks) detection frame-
work for smartphones

ACM Computing Surveys, Vol. -, No. -, November 2012.

12 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

For example, the first step is to extract the features that are relevant to a pro-
gram or process. Then, statistical and information-theoretic measure analysis is
performed to select features having the ability to discriminate between two di↵er-
ent types of processes. The final step is to make a decision by using classification
and prediction algorithms. Despite of having these similarities, significant di↵er-
ences do exist between both analysis paradigms. The static techniques are usually
employed before execution of a process (i.e. first-line-of-defense) while dynamic
techniques are employed either at run-time or after the process has executed (i.e.
second-line-of-defense); therefore, combining both of them in a framework can help
provide a two-layer defense against emerging zero-day malware.

The proposed hybrid framework consists of two layers: (1) Static Analysis and
Detection Layer (SADL); and (2) Dynamic Analysis and Detection Layer (DADL).
The prominent modules of SADL are:(i) file scanning agent, (ii) features processing
agent, and (iii) classification engine. On the other hand, the top level modules of
Dynamic Analysis and Detection Layer (DADL) are:(i) process and system monitor,
(ii) spatio-temporal processing agent, and (iii) classification engine.

The implementation of the framework operations can be done either in the kernel
space or the user space or both. (Generally speaking, it is preferred to implement
the dynamic layer in the kernel space.) Figure 1 summarizes the flow, interaction
and characteristics of di↵erent modules. The prominent features, their characteris-
tics and functions of layers along with their submodules – provided in the following
subsections – are based on common solutions proposed for both static and dynamic
analysis of smartphone applications.

5.1 Static Analysis and Detection Layer (SADL)

Before the program is executed, a binary executable is processed by SADL which
performs static analysis to detect security threats or leak of private information.
This layer further consists of the following submodules.

5.1.1 File Scanning Agent. The file scanning engine analyzes the executable
and extracts basic features from it. Static analysis based security solutions on
smartphones use features that are extracted from source code and binary executa-
bles. Some examples of such features are executable’s structural features [35] [36],
system calls and library calls in binaries [37] [38], n-gram of assembly instructions
[39], malicious patterns analysis in disassembled code [40] and static taint based
features [41] etc. Di↵erent solutions use di↵erent nomenclature for such features
and components. Therefore, we have given the generic name ‘file scanning agent’
to this module in the static analysis and detection layer of our proposed hybrid
framework.

5.1.2 Feature Processing Agent. The feature processing agent is the second ma-
jor module within SADL. It uses pre-processing filters to remove the features that
are not useful during classification i.e. the features with zero or very low clas-
sification potential. It makes sense to eliminate the features of least predictive
significance or combine them with other similar types of attributes; as a result,
the dimensionality of input attributes space is reduced. Consequently, the detec-
tion accuracy is not only increased but processing overheads are also reduced. The
common practice is to perform dimensionality reduction by utilizing information-
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 13

theoretic measures such as information gain or gain ratio measurements, Fisher
Score, Chi-squared distribution [42], principal components selection and discrete
Haar/Wavelet transform [35] etc. The dimensionality reduction also helps in re-
ducing training and testing time requirements of classifiers.

5.1.3 Classification Agent. The primary goal of classification engine is to accu-
rately classify a given feature set as belonging to either benign or malicious class of
executables. Most of static detection systems on smartphones use machine learning
classifiers – decision trees, inductive rule learners [35], support vector machines [16],
bayesian nets [43], neural networks [44] and clustering algorithms [45] etc.

5.2 Dynamic Analysis and Detection Layer (DADL)

To classify the program during (or after) execution by monitoring its runtime be-
havior, the Dynamic analysis and detection layer (DADL) is utilized. This layer
consists of the following modules.

5.2.1 Process and System Monitor. Security solutions, employing dynamic tech-
niques, extract features based on the state of an operating system, runtime behavior
of processes and their performance logs. The Process and System Monitor sub-
module is responsible for extracting these features at runtime during specific time
windows. The common feature sets are: process control blocks of executing pro-
cesses in the kernel [35] [46] [47], system call and library call logs of processes [48],
in-execution taint features of programs [45], battery utilization based anomalies
[49], operating system event logs (free RAM, user inactivity, sent SMS count etc.)
[50][51].

5.2.2 Spatio-temporal Processing Agent (STPA). In dynamic detection, it is im-
portant to estimate and predict the behavior of parameters which change with time
and that can be used for malicious application detection. Spatio-temporal Process-
ing Agent is responsible for time series analysis to select relevant features online
(while execution) and o✏ine (after the execution of processes is finished) on smart-
phones. The time series analysis employs statistical techniques such as the moving
mean, variance, divergence, time series model building, estimation, and forecasting
to compute temporal derivatives of raw features [35]. Dynamic taint analysis [45] is
another methodology that is used for realtime or in-execution malware detection.
Spatio-temporal Processing Agent also uses the pre-processing filters to eliminate
the features or attributes that don’t play a vital role in the classification process.

5.2.3 Classification and Prediction Agent. The basic aim of Classification and
Prediction Engine is to accurately classify a given feature set as belonging to ei-
ther benign or malicious class of executables on smartphones. Most of dynamic
and behavioral analysis based malware detection techniques use learning classifiers
for one or two class classification e.g. decision trees, inductive rule learners [35],
support vector machines [16], Bayesian nets, neural networks and clustering algo-
rithms [50][45] etc. Moreover, outlier or anomaly detection is also employed on
smartphones [52][51].

After introducing the generic framework, we now describe the common malicious
applications detection techniques for smartphone platforms. This will help to build
a basic understanding of common methodologies, employed by security researchers,

ACM Computing Surveys, Vol. -, No. -, November 2012.

14 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

to predict and classify smartphone applications as benign or malicious. We have
categorized the techniques into static and dynamic analysis paradigms to maintain
the flow of discussion.

6. STATIC ANALYSIS TECHNIQUES FOR DETECTION OF SECURITY THREATS
AND PRIVACY LEAKS ON SMARTPHONES

Analyzing structure, source code, functions and system calls in a binary executable
(or in the source code if available) – residing on a disk or preparing to be launched
(without executing it) – is called static analysis. Static analysis techniques are
mostly applied on di↵erent forms and representations of a program code or ex-
ecutable. In case of source code availability, the static analysis techniques help
analysts in finding memory leaks and corruption faults. They also play an impor-
tant role in quality assurance and correctness of models for di↵erent systems. If
the source code of an executable is not available, static analysis tools use its binary
instructions, disassembled assembly code and the information in structural headers
for classification. This section deals with various techniques and approaches that
have been applied to perform such static analysis.

6.1 Malicious Code Pattern Detection

A simple and fast way to detect a malware (especially the ones derived from pre-
viously known malware) is similar to the signature detection schemes. The mobile
application’s source code can be searched for existence of malicious patterns of code
(or other resources). It is performed at the time of installing applications; therefore,
it doesn’t result in degrading a user’s experience. Obviously, this methodology can
be evaded using code obfuscation and polymorphic techniques to create malware.

In most cases, the source code of the mobile applications is not available; there-
fore, the general steps performed in this scheme are: (1) the application installer
packager is decompressed to extract the files (on some mobile platforms (e.g. iOS),
the binaries are not only signed but are also encrypted, so decryption needs to take
place.); (2) after decryption, binary might need to be unpacked to obtain plain ex-
ecutable; (3) the executable is then decompiled/disassembled to get the assembly
listing of the binary (In case of applications compiled as intermediate byte code
(e.g. JAVA classes), inexpensive decompile techniques exist to get the original java
source.); (4) the observed malicious patterns are stored in a database; and (5) the
final step is to search for malicious patterns – a code block, a specific API call or
pattern of calls, a combination of permissions, call to the native runtime environ-
ment, attempts to bypass the permissions, or attempts to use services or provisions
that would quickly deplete the battery – in the executable. A match triggers a
malware alarm.

6.2 Static Function Call Analysis

Some researchers use static analysis of function calls in a program to di↵erentiate
between benign and malicious processes on smartphones (functions are reusable
blocks of code that perform a specific task.). In this methodology, a programme
that uses certain function calls is classified as malware. Any good disassembler has
a built-in capability to list function calls, existing in the code of a program, and
the resulting assembly code (obtained from disassembly of a binary program) to
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 15

build a function call flow trace. In some binary formats (like ELF) relocation and
symbol tables contain the information about function calls. The static function
call analysis is done on the pattern of function class flows of a program. It uses
statistical distance measures to match the pattern with malware or benign models.

6.3 Static Permissions Leak Detection

Most mobile operating systems allow/disallow use of their resources by defining and
applying a permission or capability model. Each application can only access the
permissions that it has specifically requested at the time of its installation. These
permissions are also confirmed by a user at installation time (or first time use)
depending on the policy of an operating system.

Two interacting applications can by pass the permissions model by invoking in-
directly the services of another application. Assume that an application A has the
permission to access Internet. If another application B can invoke A, it is pos-
sible for B to access Internet indirectly without explicitly getting the permission
for it. This phenomenon is known as Permission/Capability Leak. If a privileged
application – having permissions to perform a privileged action – exposes an inter-
face for invoking privileged actions, it can help un-privileged applications to invoke
privileged actions indirectly.

Interfaces can be defined in a number of ways. For example, Android uses the
mechanism of Intents, and the iOS allows applications to register as URI handlers.
Di↵erent applications from the same developer might use the same identifier. As a
consequence, applications from the same developers can use a union of the permis-
sions of individual applications. This permits applications to do actions for which
permission is not sought and this leads to implicit permission/capability leak.

Possible control flows of a program (as mentioned before) are created using a
control flow graph. Indirect control flows (like threads) also need to be catered.
Moreover, a control flow for each entry point (in case of multiple entry points)
needs to be created and they need to be merged in a single graph. A leak can be
detected by finding a feasible path between an interface and the privileged action.
If such a path exists, a permission/capability leak has occurred.

7. DYNAMIC ANALYSIS TECHNIQUES FOR DETECTION OF SECURITY THREATS
AND PRIVACY LEAKS ON SMARTPHONES

Dynamic analysis techniques monitor behavior patterns in runtime execution traces
to detect security threats and privacy leaks. For this purpose, they analyze the in-
formation available in process control blocks of processes, function and system calls
– their functionality, call sequences and parameters, taint analysis of executing in-
structions of programs, performance benchmark counters and parameters of OS.
Dynamic techniques are relatively more resilient to evasion techniques – code ob-
fuscation, polymorphism and metamorphism – that are successful against static
analysis techniques. Dynamic techniques come in two flavors: (1) post-execution
– o↵-line analysis performed on dynamically produced datasets (system calls, taint
data); and (2) In-execution – online analysis in realtime to detect malicious pro-
grams during their execution to protect the OS and other user programs from their
malicious activities. This section summarizes various techniques and approaches
that have been used to perform post-execution and in-execution dynamic analysis.

ACM Computing Surveys, Vol. -, No. -, November 2012.

16 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

7.1 Information Flow Tracking

A smartphone user would like to protect her/his privacy sensitive information or
data that includes user’s contacts, messages, device ID/phone number information
etc. Moreover, modern smartphones come with several local monitors – GPS, ac-
celerometer, camera and microphone – that can provide useful information about
the location of a user to advertisers. But sharing such information with advertisers
without the explicit consent of a user is an obvious breach of her/his privacy but
also a violation of her/his trust. This type of sensitive data is tracked by using
the concept of tainting : mark/label the sensitive data and then track its usage by
di↵erent applications.

The taint labels helps in tracking di↵erent transformations that are applied to
the original taint data. The entry point of taint data into an application is termed
as a taint source. Similarly, a taint sink is the point where taint data leaves the
application. APIs for accessing contact lists and GPS information are examples of
taint sources and network interface APIs – used to transmit taint data over the
network – are examples of taint sinks. A taint sink can be programmed to filter
tainted data to ensure privacy of a user. Using taint labels, a sink can detect
transformed sensitive data provided taint labels are properly propagated from the
source to the sink. In case of “direct data propagation” – direct assignments and
string and arithmetic operations – taint labels need to be assigned to track the
information flow. In “indirect data propagation”, data can be transformed using
the address mapping of a known table. An application might map each character
in the tainted data to an index of a table (containing only unique values) and then
use the index as an address; as a consequence, this indirect memory address of the
tainted information needs to be propagated as well.

In case of control flow (if/else), keeping a track of taint labels becomes a daunting
task because the information transformation may span over multiple instructions.
For example taint data could be tested against di↵erent values and its new copy be
created without resorting to “direct data” or “address” mapping. In implicit flow,
the values are indirectly assigned with the help of branches that are not executed;
as a result, tracking becomes di�cult.

7.2 Dynamic Function Call Tracing

Dynamically monitoring function calls of a program has been used by the majority
of researchers for malware detection on smartphones (and desktop as well). A secu-
rity driven analysis of invoked function calls of a process provides useful information
about the intent of its writer. The main di↵erence from static function analysis is
that these techniques analyze the order in which the function calls are made at
runtime and generate related function “call flow graph”. Classification is generally
performed by comparing the call flow graph of a process with that of benign and
malware. They employ statistical distance measures to label the executing process
as benign or malware.

To enable this, a program needs to be hooked to log a limited number of invoked
function calls – using interfaces defined by the operating system – that are use-
ful (like Software Development Kit (SDK) APIs and system calls). For example,
Android applications use Java SDK APIs that allow for easy interfacing with the
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 17

device.

7.3 Runtime Permissions Leak Detection

As mentioned before, modern smartphone operating systems use permission models
to allow applications to do operations. Kindly recall permissions can be leaked when
an unwitting (or possibly colluding) application that has a permission, exposes
an interface that allows another application (having no permission) to request a
privileged action on its behalf leading to privilege escalation attacks. Moreover, it
is also possible for two colluding applications, with di↵erent sets of permissions, to
share data with each other through covert channels – extending their permission
set to the union of both applications’ permission set. These covert channels can be
established by applications through shared resources such as contacts database, or
observable (and mutable) properties of the system resources (such as volume level,
brightness level, etc.).

To detect a permission leak attack at runtime, the interprocess communication
needs to be monitored. Specifically, the standard mechanisms provided by smart-
phone operating system (such as Intents on Android) need to be restricted based on
a security policy. An application A that has access to some private data of a user
but has no permission to access the network, should not be allowed to communicate
to an application B that has permission to access the network.

Even when the standard interprocess communication channels are monitored and
restricted, it may be possible for an application A (without network access) to
communicate with application B (with network access) through covert channels
that can be restricted based on a security policy. For example, if an application A
has made a new entry in the address book, an application B should not be allowed
to see that specific change.

The biggest challenge in this approach is to create a comprehensive security policy
and to reduce the number of false positives.

7.4 Misbehavior analysis using power utilization patterns

Another misbehavior detection approach is to monitor and analyze the power con-
sumption of applications running on battery powered smartphones. Typical ap-
plications have a specific battery depletion pattern and the basic assumption of
this approach is that malicious applications would use a non-standard battery uti-
lization model. The challenge is to model battery utilization behavior of benign
applications accurately. The challenges and emerging issues of power based mal-
ware detection (presented in [53] and [49]) are: (1) accurately modeling the battery
usage patterns according to a user’s behavioral patterns on a smartphone; (2) mon-
itoring the battery power usage in realtime is a di�cult task because the precision
of power measurement APIs varies on di↵erent smartphones; (3) frequent queries
about battery’s remaining capacity also load the CPU and discharge the battery;
and (4) polymorphic variants of malware need to be detected to keep the false
positive and false negative rates at an acceptably low level.

Di↵erent methodologies have been proposed to accurately measure and model
power consumption. The well known are two: (1) external measurement, and (2)
on-device battery status APIs. The external or physical measurement of power
consumption requires external sensors and probes. As power is a product of voltage

ACM Computing Surveys, Vol. -, No. -, November 2012.

18 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

and current drawn over a unit time; therefore, both of them need to be monitored.
Mostly battery maintains the voltage within an acceptable error range; as a result,
only the current drawn needs to be sampled over time. One way is to do the
measurement directly by intercepting a smartphone’s battery circuit. An indirect
way is to measure the magnetic field, produced by the current, using the well
known phenomenon of Hall e↵ect. In order to generate the power profile of an
application, sampling by the power monitor needs to be synchronized with the real
on-device activity. Most mobile operating systems also provide APIs for reading the
current battery status. Using a timer, the battery status can be sampled to measure
the power consumption of an activity or application. The problem, however, is
a significant loss of accuracy. The results are reported as battery segments or
remaining battery in percentage, with a granularity between 5 or 6 segments to 100
segments. Latest smartphones provide 1% resolution for battery status and it is
only marginally acceptable.

A typical classification paradigm is: to compare the power consumption profile
of a phone with that of the one logged during normal operations. If no malware is
running, the power consumption profile should be similar to that of the logged one;
otherwise, in case of a discrepancy an alarm about a malicious activity is generated.

7.5 System Performance/Behavior based Anomaly Detection

Another dynamic approach is to monitor a system’s performance or behavior, and
identify the anomaly in this behavior to detect malicious applications. The un-
derlying assumption is: a system’s performance parameters di↵er in a significant
manner because of presence or absence of a malware activity.

In this technique, the goal is accomplished through periodic monitoring of di↵er-
ent activities (including but not limited to): message activity, telephony activity,
filesystem activity, CPU utilization, memory consumption, network activity, bat-
tery drainage, processes and threads, and other parameters relating to a system’s
health and responsiveness. These metrics are measured for normal user activities
or in the presence of malware activity or both. The profile of a system behavior for
normal and malicious activities is termed as benign or malicious profile respectively.

The common mechanism to present such profiles is through mapping points in a
multi-dimensional space, a set of boolean or comparison rules, and probabilities etc.
The profiles can be updated when a new malware is detected. The classification is
done by applying data mining techniques on the profile. Typical machine learning
algorithms used by researchers for malicious behavior detection on smartphones
are: Bayesian Networks, K-Nearest Neighbors, Random Forest, Artificial Immune
System, Radial Basis Function and Self-Organizing Maps.

The true merit of this technique is the ability to detect packed/encrypted mal-
ware. No unpacking/decryption is needed because the impact of an executing
process on a system’s behavior is observed. Moreover, it is possible to detect zero-
day (unknown) malware that do the same malicious (as that of known malware)
activity but by using di↵erent instructions, steps and processes.

The major challenge in this technique is: selecting thresholds for di↵erent perfor-
mance parameters that discriminate normal and malicious behavior. Moreover, for
anomaly detection, the complete picture of normal or anomalous behavior needs to
be defined and then used in training. A benign process that is di↵erent from the
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 19

processes used in training will be definitely classified as malware (a false positive);
therefore, achieving low false positives is not an easy task.

After discussing the common static and dynamic malware detection techniques
for smartphones, we now focus our attention to the existing tools and frameworks
that utilize them. We restrict our discussion to the major tools and frameworks
only, proposed in the recent years, with an aim to choose the representative tools
for the above-mentioned techniques.

8. SECURITY AND PRIVACY ANALYSIS & DETECTION TOOLS FOR SMART-
PHONES

In this section, a critical review of tools and frameworks for analysis and detection
of malicious executables and programs on di↵erent smartphone operating systems
is presented. A short description of di↵erent tools along with their analysis and de-
tection methodology is discussed. Specifically we focus on classification e�ciency,
processing overheads, scalability issues, robustness and resilience against evasion
techniques. Finally, we provide relative merits and demerits of a technique com-
pared with others.

8.1 Woodpecker

Woodpecker [54] is a security tool that exposes privilege escalation attacks in An-
droid based smartphone applications. It is capable of detecting both explicit and
implicit permission leaks. The authors have defined explicit permission leaks as “use
of the public interface of a privileged application by a non-privileged application
to circumvent the operating system’s permission model”. On the other hand, im-
plicit permission leaks happen when applications share permissions by using shared
developer keys.

Woodpecker detects possible permission leaks in the installed (or to be installed)
third party applications as follows. First, the Dalvik code is extracted from an
application’s executable and it is disassembled. Then, Woodpecker generates con-
trol flow graphs from the byte code. Since the application may have several entry
points, control flow graphs are generated from each entry point. Woodpecker also
takes care of indirect flows (such as thread runnables in Java) to maintain control
flow connections.

Using control flow graphs, the capability leak is detected through identification of
feasible paths that contain dangerous calls (permission dependent functions). For
each entry point, the control flow graph is traversed and the feasibility of each path
is computed. If a feasible path passes through any dangerous call, it is flagged as
a capability leak. For implicit leak detection, Woodpecker crawls the manifest files
of all applications and computes union of permissions for applications with shared
identifiers (the applications developed by the same developer). Then, woodpecker
uses the control flow graphs to detect if such a permission leak is being exploited by
any application. In the case of implicit leaks, Woodpecker generates control flow
graphs from entry points and looks at their initialization routines as well.

The authors tested Woodpecker tool on 8 di↵erent phones from 4 di↵erent ven-
dors. The phones were selected to ensure diversity of tested applications on the
Android platform. The authors selected a set of 13 privileged permissions which
include: getting a user’s location, making calls or sending messages, deleting user’s

ACM Computing Surveys, Vol. -, No. -, November 2012.

20 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

data and recording user’s conversations. Their analysis shows that 11 of these 13
permissions were explicitly leaked on the chosen phones. Some phones leaked nearly
8 of these permissions. This means that a third party application can perform a
privileged operation by using a leaked permission without the need to ask for a
permission from the user or the system. The authors claim that although a large
number of possible paths with capability leaks are returned by the Woodpecker, the
path feasibility calculation in the Woodpecker tool removes the false trails. The
manual verification of the results confirm zero false alarms. The false negatives
(in this case) are not reported, which is understandable as the authors don’t have
knowledge of all the permission leaks. However, the authors could have generated
a test suite with di↵erent permission leaks, and then tested the tool on it to re-
port any false negatives. Since the tool is designed to be used o✏ine; therefore,
the processing time of around 1 hour for each system image (with typically 100 to
150 applications) seems reasonable. If this tool is to be used online at the time of
installing applications, the processing overhead needs to be significantly improved.

8.2 Static Function Call Analysis for Collaborative Malware Detection on Android OS

The authors in [37] have presented a framework for detection of malware on Android
OS using static function call analysis of ELF files by using supervised data mining
algorithms for classification. A framework is presented for collaborative detection of
malware in ad hoc mobile networks. In a simulation environment, the collaborative
framework produces significantly better results.

The framework has three components: On-device analysis, Collaboration and
Remote analysis. The features are extracted through on device analysis. The data
extraction is done at the OS level because the Java framework doesn’t provide
required APIs. A custom written tool Interconnect Daemon monitors the filesys-
tem and operating system events. This daemon is responsible for identifying ELF
executables on the system. It parses the executables, using the readelf tool, and
creates a list of reference functions for each running executable on the system.

The list of functions used by an ELF executable are divided into six di↵erent
attribute sets based on the type of a function (dynamic, relocation and a set of
both) and its presence in malware and benign executables (mutually present, set
of all functions). The machine learning classifiers – Prism, PART and Nearest
Neighbor Algorithms (KNN) – are trained and tested on the dataset of features
extracted from both benign and malware executables.

The features are analyzed using WEKA tool [55]. Approximately 100 benign ELF
executables present in Android /bin directory, and 240 ELF malware executables
found on Internet have been used for training and testing of classifiers. Using 10
fold cross validation, the classifiers are trained and tested on the features extracted
from benign and malware executables in a dataset. The results show that Prism
achieves zero false positives but has a low detection rate (approximately 70%) and
also uses a large set of classification rules. In comparison, PART produces minimal
rules set and has a detection rate of over 99%. However, it produces 12-16% false
positives. The learning and classification can be performed on a remote server
to reduce the processing load on a smartphone. However, the authors have not
reported any memory and processing overheads on the system.

To reduce the false negatives, the authors have created a collaborative environ-
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 21

ment (an ad hoc network) where a node can request its neighboring nodes to help it
in classifying malware. Using a threshold of uncertainty, the results returned from
the neighboring nodes can be used for properly classifying malware. They have sim-
ulated an ad hoc mobile network to prove the claim that collaborative nodes help
in reducing false positives. The authors also demonstrate that frequently collabo-
rating nodes reduce the number of infected nodes in an ad hoc network; however,
such collaborations lead to a fast depletion rate of the battery of a smartphone.

8.3 Static Function Call Analysis using Centroid - Symbian

A tool for malware detection through static function call analysis on smartphones
has been presented in [38]. The framework has been implemented and tested on
the Symbian OS. The tool classifies the applications into benign and malware on
the basis of a clustering algorithm called Centroid machine.

The framework consists of two parts: (1) feature extractor and (2) centroid
machine. The list of functions in an executable defines the features’ set. The list
of functions is statically extracted using IDA Pro4. In some cases, an executable
might have to be unpacked before extracting features from it. Unpacking is done
by using the UnSIS5 tool on the Symbian platform. After unpacking and feature
extraction, feature selection is performed by using statistical techniques. This helps
in reducing the number of attributes and increasing the classification accuracy. A
small set of attributes help in reducing the memory and processing overhead of
the detection technique. The labeled training dataset is divided into the clusters
of benign and malware datasets by using the centroid machine. The classification
is performed by measuring the ratio of distance of a given application’s attributes
from the centroid of benign and malware clusters respectively. The application
is classified as benign if its distance ratio – within a threshold that is adaptively
determined – is smaller from the benign cluster compared with the malware cluster.

To test the framework, the authors collected 33 malware programs available on
the Symbian OS and 49 benign popular applications available on the Internet.
The experiments highlight the impact of features reduction on the the detection
accuracy. Moreover, the authors have also compared the performance of centroid
machine with Naive Bayes and Binary Support Vector Machine (SVM) algorithms.
For statistical significance, the results have been averaged on 1000 runs, and 10-fold
cross validation is used for training and testing.

The results show that the detection accuracy is only marginally a↵ected by re-
ducing the number of attributes from 3620 attributes (accuracy: 98.7%) to only 14
attributes (accuracy: 96.5%). For 14 attributes, the Naive Bayes and Binary SVM
achieve accuracy of 90.2% and 91.9% respectively. The authors do claim that the
centroid algorithm is e�cient and light-weight (making it suitable for running on re-
source constrained smartphones) but they have not provided its empirical evidence
by reporting memory and processing overheads.

4http://www.hex-rays.com/idapro/
5http://developer.symbian.com/main/tools and sdks/developer tools/critical/unsis/index.jsp

ACM Computing Surveys, Vol. -, No. -, November 2012.

22 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

8.4 PiOS

Another static analysis based tool PiOS is proposed by [56] on iOS platform to
detect information leaks. It tracks information flow through static analysis of Mach-
o executables. In this approach, the tool generates control flow graphs (CFG) from
binary executables. In Objective-C, the function calls are bound to the function
instances through the Objective-C runtime library; as a result, the function calls
are replaced by messages calls (msgSend). To detect a correct function call, the
authors have built a hierarchical structure to identify the derived and relevant base
classes. Afterwards backward slicing is used to track the input parameters and their
type to a dispatch function. In this way, the authentic targets of function calls are
determined as a pre-requisite of CFG and it leads to successfully constructing CFG.

In the next phase, the framework performs the reachable analysis to determine
the existence of paths (hierarchical function calls), which provide connectivity of
the source of the sensitive data to their sinks – modules that provide connectivity
and communication. This analysis on CFG determines the information leakage
from iPhone devices to the third-parties or hosts. In the final phase, the data flow
analysis is performed to validate it. Finally, PiOS generates the list of source-
sink pairs for the analyzed information flows (the pairs represent di↵erent private
information leakage scenarios). The tool allows a user to manually inspect the list
of pairs that are linked even though no information flow is seen between them.

The authors have analyzed 1400 iPhone applications using PiOS. They report
that other than few ‘bad apples’, most of the test applications didn’t leak sensitive
information. It is interesting to note that more than 50% applications secretly
leaked the identity of the mobile device. This leak, coupled with profiling a user’s
smartphone usage pattern, has the potential of a privacy leak.

8.5 SmartDroid

Smartphone applications are typically highly interactive, which means that a mal-
ware can hide its activity from automatic malware detection tools by hiding the
trigger for the malicious activity in complex user interactions. SmartDroid [57] is a
framework that attempts to solve this problem by finding such user-interface (UI)
interactions through a hybrid (static and dynamic) analysis of the application and
simulating the triggering interactions. The static analysis module i.e. static path
selector (SPS) determines the possible activity switches and function calls paths. It
performs this analysis by disassembling the application and constructing function
call graphs (FCG) and activity call graphs (ACG). All indirect and event-driven
APIs are also included in the construction of CFG. The ACG is constructed through
analysis of explicit and implicit Intent constructor calls. Dynamic analysis is per-
formed to match the UI-elements with their related UI-event functions. A dynamic
UI Trigger is created by modifying the Android framework and building a modified
emulator. The UI-Interaction Simulator helps in performing dynamic analysis in
an automated manner through traversal of the UI tree and simulating interactions
with the UI-elements in activities.

The prototype of SmartDroid framework is evaluated using 19 malicious appli-
cations, belonging to seven di↵erent malware families. The authors report that
SmartDroid is able to e�ciently unveil the simple indirect UI-based trigger condi-
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 23

tions. However, some of the complex indirect conditions (data based UI elements
creation) for trigger are missed. The static analysis mean time is reported in the
range of 5-16 seconds, while the dynamic analysis mean time is typically about half
a minute per path. This framework is suitable only for o✏ine analysis or decou-
pled analysis of the potentially malicious applications because it requires changes
in the Android framework and relatively large analysis overhead. Moreover, the
framework has only been tested on a very small and selected malware dataset.

8.6 Multi-Level Anomaly Detector for Android Malware (MADAM)

The authors of [50] have proposed a multi-level anomaly detection framework that
detects malicious application through dynamic analysis in realtime using machine
learning classifiers. As the framework uses anomaly detection instead of two class
classification, it is supposed to be capable of detecting zero-day (previously unseen)
malicious applications. The framework monitors the smartphone on two di↵erent
levels: the kernel space and the user space. The system calls made by the smart-
phone applications are intercepted and logged in the kernel space using a kernel
module. The list of running processes, the memory usage and the CPU utilization
are also monitored in the kernel space. Moreover, a user’s state (active or idle),
key-strokes, called numbers, SMS, Bluetooth and WLAN activity is analyzed and
logged in the user space. This multilevel view of the system events helps in a wider
range of features (used for monitoring) and provides a correlated view of the events
occurring at di↵erent levels.

The authors have employed k-nearest neighbors (KNN) (with k=1) algorithm for
classification of the collected feature set. A dataset of 10 malicious and 50 legitimate
applications on Android is used for evaluation purpose. The authors have divided
classification process into three phases: (1) training phase, (2) learning phase, and
the (3) operative phase. The framework is claimed to be doing anomaly detection
but its classifier is trained using feature vectors of a normal user behavior and
synthetically created malicious behaviors. In the learning phase, the classifier is
trained for a user-specific behavior to estimate the false alarm rate (a decrease in
FAR is reported from 26% to 0.1% as the analysis time increases from 10 to 240
mins respectively). The authors show that the framework can adapt by gradually
adding new elements in the training set at run-time. Finally, in the operative
phase, a classifier does anomaly detection on short-term (1 sec) and long-term (60
sec) timing windows. An average detection rate of 93% along with an average
false positive rate of 5% is reported. The performance overheads are: 3% memory
utilization, 7% CPU overhead and 5% battery depletion. The major shortcomings
of the framework are: (1) high false alarm rate; and (2) evaluation on limited
number of real malicious applications. The authors claim that the framework is
capable of detecting zero-day malware.

8.7 Virus Meter - Battery Utilization patterns - Symbian

A misbehavior analysis and detection tool Virus Meter, which uses battery utiliza-
tion patterns of applications, is presented and demonstrated for Symbian OS on
Nokia 5500 smartphone [49]. Its core principle is to detect energy hungry applica-
tions [53]. The authors have profiled energy utilization of applications based on a
user’s activity (the duration of voice calls, frequency of sending/receiving text mes-

ACM Computing Surveys, Vol. -, No. -, November 2012.

24 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

sages, usage & processing of documents, a system’s idle state, entertainment and
other activity benchmarks), and a system’s performance/benchmark parameters –
signal’s strength & weakness and the network’s activity and its state & conditions.
It is argued that these conditions significantly e↵ect the battery utilization behav-
ior: for example a long voice call, frequently sending & receiving SMS and low
signal strength results in more battery depletion. Three power calculation func-
tions are approximated by using machine learning algorithms (linear regression,
neural networks and decision trees) to compute the power consumption between
two subsequent power measurements.

A state machine is defined to model a user’s behavior that is previously defined.
This state machine consists of a sequence of steps: (1) the power consumption
monitoring application is installed on a clean (no malware) smartphone OS; (2) a
known process, whose power consumption is to be measured, is launched; (3) the
relevant events along with their characteristics are identified and recorded; (4) an
association and correlation of events with the launched process is computed and
relevant features of the events are recorded; and (5) finally, steps 1 to 4 are iterated
to identify the sequence of common events.

Using the power models and state machine events, the di↵erence between pre-
dicted power and the measured power is calculated. If abnormal patterns are ob-
served between the two, the application is declared as malicious. Virus Meter uses
linear regression model to detect misbehaving applications in realtime. The linear
regression model reduces the processing overheads but realtime prediction might
not be accurate due to oscillatory behavior of electro-chemical batteries. This might
increase the false positive rate in misbehavior detection. The machine learning al-
gorithms – decision tree and neural networks – provide better results and reduce the
probability of false positives because they give a decision over time series collected
data instead of individual instances. The machine learning algorithms consume
relatively more processing and battery power; therefore, they are only used in the
charging mode.

The framework is evaluated using known Symbian malware FlexiSpy and di↵er-
ent variants of Cabir. FlexiSpy is basically a spyware, designed to do silent calls,
interception of calls and SMS forwarding etc. Cabir uses bluetooth functionality
to spread itself. The misbehavior (min-max) detection rate of the framework on
detecting silent calls, calls interception and SMS forwarding is 85-93%, 66-90% and
89-98% respectively in both realtime and charging modes. On the other hand,
Cabir’s variants detection rate is 89-93%. Moreover, the false positive rate of the
framework is 4-22% using the above mentioned predictor and classifiers. Further-
more, the processing overhead of the framework is 1.5% in terms of power con-
sumption using linear regression. To conclude, the virus meter is not suitable for
realtime deployment because of its high false alarm rate and inconsistent behavior
of electro-chemical batteries (due to power fluctuations).

8.8 Energy-Greedy Anomalies & Malware detection - Windows Mobile

This framework uses signatures, derived from the power utilization history, to detect
energy greedy malicious applications [53]. It is developed for HP iPAQ smartphone
on a Windows Mobile operating system. The framework consists of two major
components: (1) a power monitoring module and (2) a data analyzer module. The
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 25

power monitoring module collects, analyzes and maintains power consumption –
calculated by the product of instantaneous current and voltage over a fixed time –
of di↵erent applications running on the phone. The power is precisely calculated, by
using an oscilloscope with a hall e↵ect probe, which measures the current drawn by
the phone (since the voltage is constant; therefore, the power is directly proportional
to the current drawn).

The malware can learn the sampling pattern and accordingly change their execu-
tion behavior; therefore, the authors use two di↵erent power calculation methods.
In the first method, power samples are taken after a fixed period of time but the
starting and ending points are randomly chosen – making the measurement interval
random. In the second method, even the frequency of collecting samples is made
random as well. The monitoring module also computes and stores a mean value of
di↵erent power levels for each state of the smartphone e.g. on, backlight o↵, screen
o↵ and on, backlight on and screen on etc. Once the power consumption approaches
near to the threshold level, the power monitor raises an alert and begins to store
the energy utilization record. To achieve better accuracy, a higher sampling rate is
preferred but that might lead to more power loss.

The data analyzer component extract patters from the collected samples and
generates signatures. It uses a moving average filter to remove high frequency
outliers in the sampled data and it uses a customized compression algorithm to
reduce processing overhead of matching the generated signatures with the ones in
the signature database. Newly installed or signature-less applications are generally
misclassified.

Using the above-mentioned scheme, battery depletion attacks are detected with
100% accuracy – di↵erent programs (e.g. WiFi faker and dummy programs etc.)
and their combinations are evaluated. The framework is tested using four mobile
worms i.e. Cabir, Lasco, Commwarrior and Mabir (they belong to the same malware
family). The authors have shown that the power signature of one malware can be
used to detect other unknown (zero-day) malware of the same family. The accuracy
to detect one worm varies between 93% and 100%. On the other hand, the detection
accuracy of a family for worms – detected with the same signature – varies from 80%
to 93% (and 100% only in the case of Mabir worm family). The false positive rate is
approximately 2%. The processing overhead of the framework, in terms of battery
utilization, is not reported and the robustness of battery based signatures is not
analyzed. A crafty attacker can design a malicious application that consumes the
same power utilization pattern as that of a benign application; as a consequence,
it can successfully masquerade as a legitimate application.

8.9 Cloud-based Paranoid - Android

A dynamic and decoupled security solution Paranoid is presented in [58]. To avoid
the resource extensive implementation of a security framework on a mobile host, the
authors have suggested a cloud-based security framework for Android. They record
and replicate the minimal instruction traces of Android’s executing processes to a
remote server in the cloud. On the server, the collected instruction set of processes’
are replayed in the Android’s emulated environment and a multi-layer forensic
analysis is performed to detect malicious processes.

The flow of information among di↵erent components in the Paranoid framework
ACM Computing Surveys, Vol. -, No. -, November 2012.

26 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

is summarized. An instruction tracer records (using ptrace system call) program
instructions and stores them into a secure storage, available on a mobile host. To
protect the blocks of instruction traces from being tampered by any intruder or
malicious software, a message authentication code (in conjunction with the hash
key) is attached with every instruction block. To protect the previous blocks in
the storage, key rolling approach (hashed MAC code of the previous key) is used
to calculate the hash of the new (to be) used key. To avoid any failures (e.g.
battery power problems), instruction traces are only synchronized with the cloud
server when the smartphone is in the charging mode. To record and replay the
complete execution process of a program, the recorded instructions and the input
data – provided by the user through hardware – is required. Paranoid doesn’t
store the input data with the instruction blocks; therefore, a separate proxy server
is implemented on the server side to fetch the data on demand. The instruction
blocks and data are transferred from a mobile host to the cloud in a compressed
form. An Android emulator is installed on the cloud server to perform the security
checks during the replay of a program’s instruction trace. The checks are: (1) code
injection and bu↵er overflow attacks; (2) a signature-based on access scanning of
files by the open source antivirus; (3) an emulator’s memory scan for malicious
codes; and (4) anomaly detection using the system call traces of the programs.

In the emulation environment of a cloud server, the malware detection accuracy
and false positive rates are not reported explicitly. In general, the authors have
emphasized the processing, storage, power consumption and replication overheads.
They have collected data and process traces from real smartphone users’ (more
than 100 smartphones can connect to the cloud and replicate data.). It is reported
that, most of the time, a smartphone remains in an idle state or is used for voice
calls. The data rates in the idle and busy states are approximately 64-120 B/s and 2
KB/s respectively. The volume of collected data of voice call traces exceed 20 MB.
Replicating data from a smartphone to the cloud server can have significant costs
in terms of bandwidth hogging and the price charged by 3G operators. A better
approach would be to store them in a local memory and use WiFi connections
instead. The framework increases the processing load of a smartphone by more
than 15% and battery depletion rate by 30%. Both overheads are quite significant.

8.10 Crowdroid - System calls based decoupled security

This framework employs dynamic monitoring of system calls of Linux kernel to
detect malicious applications on Android. It uses decoupled malware detection
approach to reduce processing and power overheads [59]. The authors have devel-
oped a smartphone client application – crowdroid – that uses crowd souring. It
consolidates the log of system calls of di↵erent applications, running on multiple
smartphones, and uploads the data on a remote server. This framework employs
the strace tool for logging systems calls and ftp to upload the data to the remote
server. The users share only behavioral data related to the used applications and
not their confidential or personal information.

On the server side, the dataset is parsed by a data processing module that uses
perl scripts to do behavioral analysis and generates di↵erent behavior vectors based
on the system calls for each application. These vectors contain the information of
accessed files, execution duration of processes, and a count of system calls used by
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 27

the application programs. Afterwards, the k-mean clustering algorithm is applied
for classification. The classification results for every individual application are
stored in the database.

The authors have tested the framework using two real malware i.e. PJApps
embedded in a steamy window application and HongTouTou trojan embedded in
a monkey jump application. They obtained benign and infected android applica-
tions from known online repositories. They collected data from 20 users. The data
contained 60 system call traces from benign and self synthesized malicious appli-
cations (50 benign and 10 malware). A 100% detection accuracy is reported for
self-created malware. For realworld malware, authors have used 20 features’ vector
of benign and malicious applications. They have reported 100% detection accuracy
for PJApps malware and 85% accuracy for HongToutou. The false positive rate
is 20% in case of benign-HongToutou clusters. Such a high false alarm rate is not
suitable for a real world deployable application. Experiments are needed to show
the robustness of their features set against evasion. Moreover, the overhead of the
proposed algorithm is not evaluated.

8.11 Knowledge-based temporal abstraction - Android

A lightweight, host based intrusion and malware detection security solution to de-
tect unknown (zero-day) malware by monitoring time series measured data and
events on Android phones is presented in [60]. This framework is adapted form
of a knowledge-based temporal abstraction (KBTA) [61] [62] ontology for smart-
phones. KBTA is based on five di↵erent types of parameters: (1) primitive features
(i.e. CPU usage, sent or received data packets over network interfaces etc.); (2)
abstract features – they are derived from the primitives (i.e. percentage of CPU’s
busy state etc.); (3) the events are a form of raw data based on a user’s (or system)
behavior (the number of screen touch events, the number of applications launched
and terminatied etc.); (4) the context is used to assign meaning to di↵erent type of
parameters: the CPU state in a user’s busy or idle state etc., and the classification
function of parameters changes with respect to their context (they are further clas-
sified into di↵erent types: state (high or low CPU activity), trend (escalating or
decreasing rate of camera activity) and rate (quantified rate of change of a feature
value) etc.); and (5) the patterns are derived from parameters, their context and
associated events by defining local and global timing constraints.

The framework consists of the following components: (1) feature manager, (2)
agent service, (3) processors and (4) a graphical user interface. After a periodic
interval, the feature manager module extracts features from di↵erent layers of OS.
The processor unit is mainly an analysis and detection framework that consists of
a machine learning classifier for misbehavior detection. It receives dataset from the
feature manager and classifies it after doing relevant processing. Finally, it forwards
the results to threat weighting units (TWU) that apply selection or summation al-
gorithms – majority voting or distributed summation etc. The final results are
forwarded to an alert service that applies a smoothing filter and min/max thresh-
olds. The agent services module provides the organization and communication
services to all components. The graphical user interface is used for configuring
agents, warning alerts and visual exploration of the extracted data. The framework
uses a fuzzy algorithm that works on a collection of constraints (instead of the

ACM Computing Surveys, Vol. -, No. -, November 2012.

28 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

classical signature based approach) to detect malware.
Di↵erent types of sample malware applications are used to test the framework:

a game for information stealing (camera pictures), a tip calculator for denial of
service, a malicious application to block outgoing calls, an information leakage
(from SD card) application and a contact stealing and transmitting application.
The frequency of data logging is selected from four intervals that vary from 2 to
14 seconds. The detection rate of applications (in the best case scenario of 2 sec
sampling intervals) is 98-100% and detection time varies in between 5-32 seconds.
If the sampling intervals are increased beyond 2 sec, the detection rate and time
are only marginally e↵ected. The authors have not reported false alarm rate even
though they have intuitively presented scenarios that could lead to false alarms.
Moreover, they have also not discussed robustness of their fuzzy algorithm against
evasion attempts.

8.12 Andromaly

It is a host based anomaly detection security system for Android smartphones
[42]. Its architecture is inspired from the knowledge base temporal abstraction
framework [60]. The authors have used two Android HTC G1 smartphones that
have 20 installed benign games. To incorporate behavioral changes, the phones
were given to two di↵erent users. The authors used 3 features reduction methods –
Chi-Square, Fisher Score and Information Gain – to rank the features (they created
three datasets with 10, 20 and 30 top ranked features). Later they classified the
datasets with K-Means, Logistic regression, Histograms, Decision tree, Bayesian
networks and Naive Bayes. The authors preferred light weight classifiers to optimize
power consumption.

They have created four di↵erent training/testing scenarios: (1) In the first sce-
nario, training set consists of 80% benign and malware samples and the remaining
20% is used for testing; (2) In the second case, they trained on the dataset of 3
malware and 3 benign applications and tested on one malware and one benign ap-
plication; (3) In the third scenario, the dataset of the first phone is used for training
and the system is tested on the dataset of second phone; (4) In the last scenario,
the dataset of three benign and malicious applications of one phone are used for
training and the system is tested on one malware and one benign application of
the second phone. The obtained results for four scenarios are: (1) In scenario 1,
the decision tree outperformed other classifiers and provided 99.9-100% accuracy
with 0% false positive rate (FPR); (2) In the second scenario, logistic regression
provided the best results (86-90% accuracy with 12-11% FPR); (3) For the third
and fourth scenario, Naive Bayes achieved 82-88% accuracy with 23-14% FPR and
75-85% accuracy with 29-17% FPR respectively. Andromaly uses 8.5% RAM of a
smartphone and its processing puts 3.5-7.5% additional load on the CPU and its
detection time is 5 sec. Overall, it degrades performance of smartphone by 10%. A
very small set of malicious applications has been used for experiments and a more
comprehensive evaluation is needed.

8.13 Behavioral Misuse Detection - iPhone

A misuse detection system based on a users’ data logs on iPhone is proposed in
[63]. The classical machine learning algorithms – random forest, bayesian networks,
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 29

radial basis function and k-nearest neighbors – are applied to a dataset that contains
a user’s voice calls, text messages and Internet browsing history. The data is logged
individually (for each individual application) as well as in a multi-modal fashion
(combined data from all services).

To collect the dataset from 35 iPhone users, the authors designed a client-server
that logs and stores the dataset. The voice calls records consist of the number, flags
indicating incoming/outgoing calls, the time stamp and call duration. The features’
set from text messages is derived in a similar fashion. Moreover, the browsing
history is maintained by logging the web-link and time stamp parameters. The
outcome data analysis is: (1) 66% users used their iPhones for Internet browsing
and they hardly visit previously unknown URLs; (2) only 2% text messages were
sent and received from new mobile numbers while other 98% were from known
family and friend numbers (almost a similar trend is observed for voice calls).

The authors have used two di↵erent validation schemes: 10-fold cross validation
and 66% data split. Using random forest classifier, the system achieved 99.8%
true positive rate (labeled as sensitivity) and 0.3-0.4% false positive rate to detect
misuse of calls, text message and browsing services. They claim that their detection
rate is 1.2% superior compared with the previous solution [49]. The error rate and
false negative rates are 1.6% and 0.7% respectively. The aggregated detection time
varies in between 1.5 and 6 seconds for both validation schemes. The robustness of
the used features set is not discussed by the authors.

8.14 TaintDroid

TaintDroid [45] is an information flow tracking tool for Android smartphones. It at-
tempts to improve the visibility of sensitive data as it flows through the third-party
applications and empowers a user to control its use. The tool is capable of track-
ing multiple sources of privacy sensitive data and provides dynamic taint tracking
capability to the system. TaintDroid modifies the virtual execution environment
of Android operating system. It applies taints (labels) to the sensitive data, tracks
its flow and propagates associated taints. Finally, an alarm is raised if the labeled
data leaves the system through an non-trusted third party application.

To e�ciently track the information flow, TaintDroid applies labels at four granu-
larity levels in the system: variable-level, method-level, file-level and message-level.
The variable level labeling tracks intra application (running in a virtual environ-
ment) data flows. To track data flow in API calls, method-level tainting is per-
formed. File-level taints are used to monitor storage and network I/O data flows.
Interprocess communication data is tracked through message-level taints.

TaintDroid exploits spatial locality, to e�ciently store and retrieve data labels,
by storing data and labels adjacent to each other. The storage overhead is mini-
mized by storing only one label for arrays. The authors have di↵erentiated privacy
sensitive data sources (taint sources) into four categories: high bandwidth sensors,
low bandwidth sensors, information databases and device identifiers. The high
bandwidth sensors include camera and microphone while low bandwidth sensors
include accelerometer and GPS (location). The address book and SMS messages
are stored in files or databases (termed as informational databases sources) and file
level tracking is done for such sources. The information that identifies a user or
a device is termed as device identifiers that include the phone number, IMSI, and

ACM Computing Surveys, Vol. -, No. -, November 2012.

30 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

device IMEI etc. TaintDroid considers the network interface as a taint sink. It
looks for transmission of tainted data through the network interface.

TaintDroid has been tested on a set of thirty di↵erent applications. These ap-
plications were randomly chosen among the 50 most popular applications lists of
12 di↵erent categories. The test bed used was Nexus One phones running Android
2.1. During execution of thirty applications, information flow from sensitive data
sources was tracked and logged. The experiment lasted for more than 100 minutes
and over 22000 network packets were generated in the process. The packet trace
on WiFi interface was logged using tcpdump that helped in validating the results.

TaintDroid correctly identified 20 di↵erent applications that were performing
potential privacy violations. These violations included: sending device identifiers,
phone information and location information to remote servers. The authors man-
ually labeled the flagged TCP connections and packets. They reported zero false
positives (although the possibility of missing false negative exists due to di�culty of
identifying them). The authors report a 3% overhead in an application’s load time.
The overhead of propagating file taints is significant: address book modification
(5.5% to create and 18% to edit). The call set up time increased by 10%. Taking
a photo with the phone camera took 29% additional time. Overall, the authors
report an average of 14% processing overhead in executing Java instructions and
an average of 4.4% memory overhead. Interprocess communication was slowed by
27% with a memory overhead of 3.5%. The major limitation of TaintDroid is that it
only looks for explicit information flow (through data); therefore, it is still possible
to circumvent taint propagation through implicit flow of information.

8.15 AppInspector

Information flow tracking tools such as TaintDroid [45] can result in a large number
of false positives as the outward flow of information may not necessarily indicate
a privacy violation. The authors of TaintDroid [45] have recognized this problem
and proposed a solution called AppInspector [64]. AppInspector is a tool that au-
tomates privacy testing and validation for smartphone applications. The proposed
framework consists of four components: input generator, execution explorer, infor-
mation flow tracking and privacy analysis tools. An application is installed in a
virtual environment of the system. The automated inputs are supplied using in-
put generator to provide maximum path coverage on the application. The authors
propose a mixed of symbolic and concrete execution approach (termed as concolic
execution) to provide better code coverage than random testing and execution.
The execution explorer keeps track of the execution path; while information flow
tracking keeps track of the flow of sensitive data and creates associated logs. The
logging of the complete execution path – leading to a leak of sensitive data – might
pinpoint the root cause of a privacy violation. The privacy analysis tools classify
log activities as normal or violating privacy. The authors have proposed correlation
of the logs with the privacy policy (EULA) of applications to automatically identify
if flow of sensitive information violates a policy. The authors present the tool as a
work-in-progress; therefore, its performance results are not available.
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 31

8.16 Android Application Sandbox (AASandbox)

AASandbox [40] is a tool for hybrid detection tool for Android smartphones. It
detects malware by combining static and dynamic malware analysis techniques.
Static detection is done by using malicious pattern searching technique. Afterwards,
the application is installed and run on an emulator within a sandboxed environment
and heuristics are used to classify the collected features’ set.

In static detection, the application package (before it is installed) is decompressed
and the binary executable and Android Manifest file are extracted. The manifest
file contains important information such as permissions granted to an application at
launch time. The executable (containing Dalvik code) is decompiled to get human
readable code. Finally, the disassembled code is searched for malicious patterns
from previously known malware. AASandbox searches for malicious patterns: ma-
licious code blocks, malicious API calls, a combination of permissions, call to the
native runtime environment, attempts to bypass the permissions, or attempts to
use services or provisions that can quickly deplete the battery.

AASandbox performs dynamic malware detection through sandboxing within an
emulator on a remote server. The Application Sandbox is installed on an Android
emulator. It runs in the kernel space and hooks the system calls. When the appli-
cation makes a system call, AASandbox intercepts the call, executes the original
call and logs the call and results. Finally, it returns the results of the original call to
the calling application in a user space. The Sandbox has been created as loadable
kernel module (LKM) and can be installed on Android device at runtime.

AASandbox has been tested on a dataset of 150 most popular applications down-
loaded from the Android Market in Oct 2009. The authors created a custom mal-
ware (ForkBomb6) for testing the sandbox. The authors show that the system
call logs of ForkBomb are significantly di↵erent from those of normal applications.
AASandbox has not been tested on a large dataset and it does not use machine
learning classifiers. The system can be implemented in a cloud environment that
helps in providing decoupled security. The authors have not done any analysis of
the time and memory overhead imposed by the detection system.

8.17 XManDroid: Framework for Mitigation of Privilege Escalation Attacks

XManDroid [65] is a security framework for Android that detects and prevents priv-
ilege escalation attacks at an application level. The framework detects transitive
permission usage of applications at runtime and monitors interprocess communi-
cation through standard and covert channels. The detection and prevention of
permission leakage is governed through a system-centric security policy.

Android operating system implements a middleware on top of a customized Linux
kernel. This middleware manages the installation, configuration, service provision,
permission management and interprocess communication for the Android applica-
tions. XManDroid framework consists of an application installer, a policy installer
and a runtime monitor. It maintains a system-wide view that correlates informa-
tion from the three components and represents the complete picture of a system
in the form of a graph. The application installer updates the system-wide view

6ForkBomb replicates itself indefinitely to create sub-processes in an infinite loop that results in
a denial of service attack.

ACM Computing Surveys, Vol. -, No. -, November 2012.

32 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

with the permissions information of new applications. The system policy installers
keep the system view updated by adopting the latest security policy. The authors
have designed a security policy which consists of rules based on the permission
contexts of the communicating applications. The runtime monitor verifies each
interprocess communication call against the security policy. A reference monitor
implements mandatory access control for interprocess communication between the
applications. XManDroid extends the Android’s reference monitor to detect and
prevent interprocess communication calls that violate the defined security policy.
The reference monitor applies the security policy to direct Intent calls as well as
pending and broadcast Intents. A decision maker component helps the runtime
monitor in the verification process.

The XManDroid framework also detects and prevents the use of covert channels
for permission leaks. It performs this task by monitoring the content providers and
the system services that can be used as covert channels. It maintains a track of reads
and writes to the content providers and disallows any read from a content provider
that had a previous write operation such that the < read, write > pair could result
in violating the security policy. Similarly, a consecutive < write, read > pair also
constitutes a violation of the security policy.

The authors tested XManDroid on a Nexus One phone running Android 2.2.1
kernel. A set of 50 benign applications has been collected from Android store. The
authors tested their framework on a custom developed set of malicious applications.
These applications employ seven di↵erent attack scenarios for privilege escalation.
The authors have also developed a security policy – consisting of 7 di↵erent rules
– for these scenarios. All attack scenarios were successfully detected by the frame-
work. This is not surprising because the custom malware, developed by the authors
themselves, might have resulted in an overfit. Other than automatic testing, the
authors have also arranged a manual testing by a group of 20 students. The authors
report an average of 3% false positives (incorrectly denied interprocess communi-
cation requests). This rate is relatively high for smartphone users and the system
policy needs to be optimized to reduce the false positives. The authors report an
average latency of 13.13 ms for interprocess communication requests that are not
found in the cache and 0.11 ms for the ones found in the cache. The latency appears
to be high if we consider the fact that typical runtime for interprocess communi-
cation is on the average 0.184 ms. The authors performed a usability test with a
group of 20 students and report that users noticed degraded performance of the
system but it was nevertheless usable. XManDroid has small memory overhead
(maximum memory usage of 4 MB) and it is possible to trade more memory for
achieving reduced latency.

8.18 Quire

On a smartphone, di↵erent applications can communicate with one another and
depute tasks through publicly defined interfaces (e.g. Intents on Android). This
allows an application to launch a confused deputy attack by improperly calling
another application’s interface and forcing it to use its privileges. Moreover, any
application (with network permissions) can create an outgoing connection to a
remote service; as a result, the id of the source of a network connection can be
obfuscated. Quire [66] has been implemented on the Android operating system
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 33

and it solves two problems: (1) inappropriate use of an application’s permissions
through its interface; and (2) trusted communication between applications by using
network RPCs (remote procedure calls).

Quire enables an application or a service, receiving an interprocess communica-
tion (IPC) message, to be able to see and verify the entire path of an IPC chain.
Using this information, the application/service can protect sensitive information
from being misused; as a result, an application without privileges cannot trick an
application with the sensitive data) to disclose its data. Quire uses cryptographic
message authentication codes (MACs) to protect the integrity of the data across
IPC and RPC channels. The keys are shared using a trusted OS service (Author-
ity Manager). This enables the operating system to verify the authenticity and
integrity of the network RPCs on behalf of the application.

To demonstrate the e↵ectiveness and usefulness of Quire, the authors have devel-
oped two applications. The first application uses Quire as a click fraud protection
mechanism for an advertising system. Instead of bundling the advertising system
as a part of the application code (allowing modification of advertisement library
and click frauds), the authors create a child advertisement application and then
extend the UI layer to deliver UI events (such as clicks) to the child application.
The two applications are stacked such that the transparency in the parent appli-
cation allows a user to see the advertisement in the child application. The user
events are transmitted directly to the child application which can leverage Quire to
verify the click event, its source and its freshness (using a time stamp). This allows
an advertisement service to ensure that only legitimate clicks result in generating
revenues for an application’s publisher.

The second application demonstrates the use of Quire in a micro-payment ap-
plication (PayBuddy) for verifying the involved parties. A remote service – using
Quire’s message authentication code mechanism for IPCs and RPCs, and secure
network connection (https) – can verify: (1) the authenticity and integrity of the
original application’s order; (2) the fact that the PayBuddy application approved
the order (so an explicit approval of a user needs to be processed); and (3) the
request originated from a particular device that has been issued with a certificate.
This allows distrusting parties (original application, PayBuddy application and the
remote payment service) to communicate with each other and validate the sequence
of events with the help of Quire; as a result, a user’s consent and the authenticity
of the placed order is verified.

The authors evaluated the performance overheads of Quire framework on Nexus
One phone with 1 GHz processor and 512 MB RAM. The message signing overhead
is 20µs plus 15µs per kilobyte. The message verification takes 556µs plus 96µs per
kilobyte that is significantly high. The overhead of tracking call chain is around
100µs per hop which is insignificant for small number of hops, but might become
significant for large number of hops (hops are usually few). The RPC calls have an
overhead below 5 ms even for a chain of 8 distinct applications and this is reasonable.
One drawback of Quire is that it doesn’t track two malicious applications that are
collaborating to circumvent permission restrictions. The tool is only able to detect
that a benign application is being misused by a malicious application.

ACM Computing Surveys, Vol. -, No. -, November 2012.

34 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

8.19 Stowaway - Android Permissions Demystified

Stowaway is a tool to detect over-privileged compiled applications on Android plat-
form [67]. The authors have extracted the API calls, invoked by an application, and
correlated them with the permissions used or acquired by the application. Each
application must use a set of least permissions according to its invoked APIs. But
applications become over-privileged due to careless unsafe code written by devel-
opers. Stowaway builds permission maps to determine content providers and their
intents; as a consequence, it is able to determine the privileges that are mandatory
for an application to execute successfully.

The DEX executables are decompiled using a known disassembling tool dedexer
and are provided to Stowaway tool. The tool extracts permissions from both ex-
ecutables and the manifest. It also tracks and extracts standard API methods.
Afterwards, it separates the user defined classes that inherit methods from An-
droid classes. The authors have used di↵erent heuristics to handle the problems of
Java reflection: (1) the return value of an object is mapped with input parameters;
and (2) the type of variable is determined dynamically at the time of its usage.
Moreover, the applications which try to access a web address must have Internet
privileges. Furthermore, in the Android environment, SD card write permissions are
implemented in the kernel; therefore, in Stowaway tool, SD card access is identified
by searching sdcard string in an application’s strings and xml files or by checking if
the APIs return path to the sdcard. The authors have employed a third party tool
– ComDroid [68] – to analyze the permissions of sending and receiving intents.

A dataset of 964 Android applications has been used for evaluating the system.
Initially, 24 randomly chosen applications are used for training the Stowaway tool.
40 out of remaining 940 applications were analyzed using the tool. It labeled 18
i.e. 45% applications as over privileged with 42 extra permissions. Afterwards,
these applications are manually inspected by the authors. It is identified that 17
applications with 39 permissions are over privileged and the tool’s false positive
rate stands at 7%. In the remaining 900 applications, a set of 323 applications
(35.8%) are marked as over privileged by the tool.

8.20 Categorization of Android Applications using static features (CAASA)

This framework uses machine learning algorithms to classify di↵erent applications
on Android smartphones [43]. The tool extracts the features from Android appli-
cations by decompressing them with Android Asset Packaging Tool and using the
files contained in .apk file: (1) the existence frequency of printable strings (known
methodology of x86 platform for malicious executables detection [69]); and (2) the
permissions set owned by the application along with its obtained rating from the
Android market.

The extraction component uses AndroidManifest.xml to extract permissions and
features of the device invoked by the application. Afterwards, the dedexer tool is
used to disassemble the executable. As a result, a directory structure is produced
with recognized classes. Finally, the strings are extracted from the application.
The term frequency and inverse document frequency are calculated for the ex-
tracted strings. The authors have obtained the market information by using an
open source API android-market-api that provides features: the number of ratings
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 35

Ta
bl

e
II

.
C

or
re

la
ti

on
M

at
ri

x
of

To
ol

s
an

d
Fe

at
ur

es

Stowaway(8.19)

CAASA(8.20)

Woodpecker(8.1)

SFCMD(8.2)

PiOS(8.4)

Centroid(8.3)

VirusMeter(8.7)

EGAnomalies(8.8)

Paranoid(8.9)

Crowdroid(8.10)

KBTA(8.11)

Andromaly(8.12)

MisuseDetector(8.13)

TaintDroid(8.14)

AppInspector(8.15)

AASandbox(8.16)

XManDroid(8.17)

Quire(8.18)

MADAM(8.6)

SmartDroid(8.5)

M
o
b
i
l
e

P
l
a
t
f
o
r
m

A
n
d
ro

id
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

iO
S

X
X

S
y
m

b
ia

n
X

X
W

in
d
o
w

s
M

o
b
il
e

X
E
n
v
i
r
o
n
m

e
n
t

O
n
-H

o
st

(4
.1

)
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

D
ec

o
u
p
le

d
(4

.1
)

X
X

X
X

X
K

er
n
el

M
o
d
e

(4
.2

)
X

X
X

X
X

X
X

U
se

r
M

o
d
e

(4
.2

)
X

X
X

X
X

X
X

X
X

X
X

X
X

X
S
a
n
d
b
o
x
in

g
(4

.3
)

X
X

E
m

u
la

ti
o
n

(4
.3

)
X

X
X

A
n
a
l
y
s
i
s

T
y
p
e

(4
.4

)
S
ta

ti
c

A
n
a
ly

si
s

X
X

X
X

X
X

X
X

D
y
n
a
m

ic
A

n
a
ly

si
s

X
X

X
X

X
X

X
X

X
X

X
X

X
X

H
y
b
ri

d
A

n
a
ly

si
s

X
X

C
l
a
s
s
i
fi
c
a
t
i
o
n

A
n
o
m

a
ly

B
a
se

d
(4

.5
)

X
X

X
X

X
X

X
T

w
o

C
la

ss
C

la
ss

ifi
ca

ti
o
n

(4
.5

)
X

X
X

X
X

S
ig

n
a
tu

re
v
er

ifi
ca

ti
o
n

X
X

C
o
n
tr

o
l
fl
o
w

G
ra

p
h
s

X
X

X
F
e
a
t
u
r
e
s

f
o
r

A
n
a
l
y
s
i
s

S
ta

ti
c

F
u
n
ct

io
n

C
a
ll
s

X
X

X
X

S
y
st

em
C

a
ll
s

X
X

X
X

X
F
il
e

F
ea

tu
re

s
X

In
fo

F
lo

w
T
ra

ck
X

X
X

T
ex

t
S
tr

in
g
s

X
A

p
p
li
ca

ti
o
n
s

P
er

m
is

si
o
n

X
X

X
X

X
X

O
S

&
F
il
e

S
y
s

E
v
en

ts
X

X
X

X
X

X
In

st
ru

ct
io

n
T
ra

ce
s

X
C

o
n
co

li
c

E
x
ec

u
ti

o
n

X
P
o
w

er
U

ti
li
za

ti
o
n

X
X

IP
C

m
o
n
it

o
ri

n
g

&
a
u
th

en
ti

ca
ti

o
n

X
X

ACM Computing Surveys, Vol. -, No. -, November 2012.

36 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

of an application, the number of times an application is installed, and the user
ratings of the application.

In the classification phase, the authors have employed four well known machine
learning classifiers: bayesian networks, C4.5 decision tree, k-nearest neighbor and
support vector machine. A ten-fold cross validation is used for training and testing.
The proposed scheme is empirically evaluated using 820 Android applications be-
longing to 7 distinct categories. The authors report the accuracy of the system by
using area under the ROC curve (AUC) measure. The Bayesian network classifier
provides the best accuracy with an AUC of 0.93. The authors have claimed in the
paper that the proposed scheme is suitable for malware detection but they haven’t
performed any experiments on malware samples. The authors have not reported
processing and memory overheads.

To conclude, in this section, we have analyzed the existing tools for detecting
malicious applications. In Table II, we present a summary of malicious application
detection techniques for a quick reference.7

Acknowledgments

The work presented in this paper is supported by the National ICT R&D Fund,
Ministry of Information Technology, Government of Pakistan. The information,
data, comments, and views detailed herein may not necessarily reflect the endorse-
ments of views of the National ICT R&D Fund.

9. CONCLUSION

Smartphones are becoming the core delivery platform of ubiquitous “connected
customer services” paradigm; as a consequence, they are attractive targets of in-
truders (or imposters). Researchers have realized that classical signature-based
anti-malware techniques are not capable of providing e�cient and e↵ective detec-
tion tools against novel, zero-day and polymorphic malware for resource constrained
smartphones; therefore, in last couple of years unconventional (non-signature) in-
telligent solutions, based on behavioral analysis (static or dynamic) have been pro-
posed. In this survey, we have enumerated various types of malicious applications
and the infection vectors that are a threat to security and privacy on smartphones.
Creating an application for malicious applications detection requires some impor-
tant challenges to be met and making crucial implementation decisions and we have
enumerated these challenges and decisions. A generic framework has been presented
for detection of malicious applications on smartphones that helps a reader under-
stand the system wide architecture of malware analysis and detection techniques.
We have also presented, analyzed and categorized latest published techniques uti-
lizing static and dynamic detection techniques on smartphones. Finally, we have
reviewed the recent malware detection tools and frameworks that utilize these tech-
niques. We hope that the survey will help mobile malware researchers and prac-
titioners to understand the existing state-of-the-art detection techniques and use
them to propose a comprehensive zero-day malware detection framework.

7Brief analysis of some other relevant techniques is presented as a supplement to this paper in
Appendix.

ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 37

SUPPLEMENT: APPENDIX A

10. MISC. SECURITY & PRIVACY SOLUTIONS FOR SMARTPHONES

The authors of [70] have proposed a secure operating system framework that wraps
primary smartphone OS in a virtual machine to establish a seclusive environment.
The renowned micro-kernel L4 is used for this purpose. The framework runs appli-
cations – demanding high security – in parallel with JVM.

In [71], a tool – DroidMoss – is developed to detect packed applications that are
launched at six uno�cial android application markets. Some of these applications (5
to 13%) are simply repacked versions of the applications that are already available
at the o�cial Android market. The authors concluded that repacking is used to
replace existing advertisements with new ones to earn revenues in an illegitimate
fashion. DroidMoss employs a fuzzy hashing technique to compute similarity score
of di↵erent applications and use it to flag packed applications.

RGBDroid [72] is a response based tool that can detect privilege escalation at-
tempts by identifying processes that try to obtain illegal root privileges and restricts
access to protected resources. The tool restricts illegal activities after a security
breach that results in reducing the processing overheads which are typically caused
by protective approaches.

In [73], the authors have proposed DroidScope which is a multilevel semantic
analysis tool that performs dynamic profiling and information tracking to detect
malicious behavior and privacy leaks in Android based smartphone applications.
The tool runs in a virtualized environment and logs instruction traces, API calls
(at OS level and Dalvik VM level) and uses taint analysis to discover leak of sensitive
information. The tool has been tested on two real world malware samples.

A security solution I-ARM-Droid is proposed in [74] for protecting smartphones
from malicious or non trusted applications. The framework monitors the APIs and
associated security polices to identify the violations. Later, the Dalvik byte code
is rewritten that interpolates the existing methods to enforce the least required
permissions or security policies. In case a method in class C is to be interposed,
the framework generates a class W (wedge class) that extends the class C. The
new W class contains the stub and wedge methods that correspond to the target
methods. The extended classes from class C are identified and modified to extend
the W class. The authors have demonstrated the compatibility of their rewritten
code with the Android platform. They have reported 110 ms average processing
overhead in rewritten applications while the size is increased by 2%.

Jana [75] platform sandbox aims at addressing a users’ privacy concerns. Its dis-
tributed architecture safely transfers a user’s sensitive information with dependable
privacy protection mechanisms; as a result, the responsibility of providing privacy is
shifted from applications to the framework that creates a sandbox for every applica-
tion run by each user – spanning from smartphones to the systems on a cloud. The
sandbox provides dedicated communication and storage channels, with customized
privacy preserving methods, to enable smartphones applications to do useful tasks.
The authors have developed a prototype to demonstrate di↵erent features of Jana.

In [76], a security framework for Android OS is presented that takes care of
confused deputy processes – the vulnerable interfaces of some privileged or over-
privileged application processes that are misused by malicious processes to perform

ACM Computing Surveys, Vol. -, No. -, November 2012.

38 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

their covert activity – and collusive attacks: malicious processes embed them into
benign applications to misuse them to perform malicious activities not allowed by
their personal permissions. The authors have built a cross-layer, system-oriented
and policy-based architecture that scrutinizes the communication channels in re-
altime among applications. At an intermediate layer, direct and indirect (using
OS components) inter-process communication (IPC) is controlled and QUIRE-like
links are setup between communicating processes to validate the call chain by us-
ing reference monitors. Moreover, the authors impose access control procedures on
the file system and all types of sockets in the kernel. A feedback channel – setup
between the kernel and an intermediate functional layer – implements the policy
at a lower level. Finally, the e↵ectiveness of the framework is determined with the
help of an application that launches realtime attacks.

A static analysis solution to detect over-privileged applications (on Android plat-
form) with the help of the permission gap – di↵erence between granted and needed
permissions – is presented in [77]. The proposed tool is tested on two datasets: it
detects 13% of 742 (dataset 1) and 5% of 679 (dataset 2) Android applications that
su↵er from a privileges gap. A significant amount of research is focused on detect-
ing over-privileged applications on smartphones (an interested reader can refer to
[78], [54], [41] and [79]).

An interesting article [80] provides a survey regarding smartphone users’ behav-
ior and their awareness about the role of permission settings in Android during the
process of installing applications. Unfortunately, the Android’s permission system
significantly depends on the risk-awareness of its users: they can install an appli-
cation if they agree with the demanded permissions at the install time; otherwise,
they have an option to abort the installation. The authors conducted a survey of
308 online users and 25 users in their laboratory asking them about their sensi-
tivity, knowledge and conduct towards permission settings during the process of
installing applications. It is amazing to see that only 17% users paid attention to
the permission during installation and a meagre 3% could only correctly answer
three basic questions involving comprehension of permissions. The conclusion is:
the Android’s permission mechanism is inappropriate for a vast majority of Android
users because it fails in enforcing correct privileges. Consequently, they suggested
improvements for a better usability experience.

A runtime verification system for Android is proposed in [81]. It maintains a
profile of suspicious applications and if the profiles of running applications match
with the suspicious one, an alarm is raised. Take the example of an application
that gets executed at the boot time, it requests the location from GPS, and finally,
it connects to the Internet to send the mobile’s location to a remote host. In this
case, the framework automatically activates a monitor to generate an alert, if the
sequence of such events is followed by any user application.

An OS service MoRePriv [82] provides omnipresent personalization like the lo-
cation service support and should be implemented in the kernel space instead of
a user space. The service parses smartphone users’ information streams over the
Internet – a users’ email, SMS, social networking database and usual network com-
munication information flows etc. – and builds a user’s profile to preserve his pri-
vacy by providing filter hooks to protect information leaks. MoRePriv empowers
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 39

a user to organize his preferences in di↵erent user applications by exposing rele-
vant personalization APIs. Moreover, the service also enforces privacy constraints
for advertisements in the applications on the basis of a user’s preferences profile.
The authors have conducted experiments to demonstrate that MoRePriv helps in
reducing over-permissions in 73% of tested user applications.

Advertisements are (mostly) an integral part of smartphone applications to gen-
erate revenue. To embed advertisement services, binary libraries are shipped with
the smartphone applications. The binary libraries require execution permissions
and demand host applications to share their sensitive information with them. In
[83] and [84], the authors have reported that 49% Android applications contain one
binary library (on the average) for advertising services and 46% applications are
able to subscribe over-permissions because of these libraries. They also show that
56% applications (having embedded libraries) also request the location information
without the consent of a user. The authors have developed AdDroid that filters
and isolates advertisement libraries and their requested permissions; as a result,
they can show advertisements without tricking a user to enable sensitive permis-
sions or share privacy related information. The other approaches that also isolate
advertisement libraries (and their requests for sensitive information) from normal
user applications are presented in AdSplit [85], [86] and [87].

11. RELATED WORK

In this section, we provide a brief summary of recently published surveys.

11.1 Other surveys on Smartphone Security

A survey paper on security of mobile devices is published by [88]. In the paper, the
authors have briefly discussed mobile wireless technologies: GSM, GPRS and EDGE
along with networking technologies WLAN and bluetooth etc. The attack vectors
– wireless interface, bu↵er over flow, network infrastructure, virus and worms, user
behavior, privacy, denial of service, battery depletion and over billing attacks etc.
– on mobile devices have been discussed. They have classified attack detection
methodologies into five di↵erent categories on the basis of detection principles,
architecture of security solutions, threat detection modes, data collection strategies
and mobile operating systems. These models are briefly summarized here: (1)
detection principles used anomaly based algorithms, machine learning classifiers,
algorithms modeling energy consumption, conventional signature based models etc;
(2) the architecture defines the point of deployment of the technique: host-based
or distributed solution in the cloud; (3) the mode determines the countermeasures
will be active or passive; (3) detecting intrusions by training the framework on
di↵erent types of datasets: system calls dataset, system performance counter and
keystrokes etc.; and (4) finally, the security solution is developed for a particular
mobile operating system – Android, iOS, Symbian etc.

In [89], the author has presented di↵erent detection techniques for smartphones.
The techniques are classified on the basis of their protection mechanism and ap-
plication analysis. The techniques for system and applications’ policies, platform
security (e.g. visualization etc.), multiple user access and information faking are
categorized as “protection mechanisms”. The dynamic, static, permissions and
cloud based analysis approaches have been summarized as “application analysis”.

ACM Computing Surveys, Vol. -, No. -, November 2012.

40 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

In another survey [90], the authors have categorized mobile malware detection
techniques into three topologies: (1) device based detection; (2) infrastructure based
detection; and (3) hybrid topologies. In the first category, they discussed behavioral
and access control models on mobile hosts. In the second category, a mobile host
tracks and logs the communication messages (or packets) and transfers them to a
remote proxy server for detecting malware on a single or multiple mobile devices
concurrently. In the hybrid topology, malware detection is done in a distributed
manner by placing the security solution on host and infrastructure; as a result, the
processing overheads on a smartphone are minimized.

The authors of [91] have provided a brief overview of security challenges on dif-
ferent smartphone interfaces (mobile network security problems: attack vectors
and vulnerabilities using browsers and backup mirror servers, DOS attacks etc.).
Some vulnerabilities are hardware dependent (like smart card) and some are generic
and platform independent: link encryption, connectivity and handshakes, SMS and
MMS vulnerabilities etc. The examples of software-based vulnerabilities are: ma-
licious software, identity theft, browsers problems, mobile botnets, SMS and MMS
vulnerabilities etc. In another survey of mobile malware [92], a behavioral analy-
sis of available mobile malware and existing protection mechanisms and emerging
trends are discussed. They have focused their survey on root exploits for Android.
They have also described di↵erent exploits and how they could be used in combi-
nation with root exploits.

In survey of [93], the authors have summarized industrial and academic research
about di↵erent paradigms for detecting mobile malware: (1) monitoring power
consumption patterns for benign and malicious applications; (2) using a dual mode
approach (di↵erent addresses for APIs in development and execution stages) for
smartphone applications is proposed. Moreover, they have proposed the idea of
hardware sand-boxing (whenever a user is busy making a voice call, the hardware
modules needed for Internet access must be disabled.)

The survey [94] briefly summarizes di↵erent paradigms for smartphones. But, two
methodologies have been discussed at depth:(1) signature-based malware detection;
and (2) detection by de-obfuscating the obfuscated code. The other relevant surveys
are [95] and [15].

Most of the published surveys have not considered the subject of security on
smartphones in depth and breadth demanded by ever increasing complexity and
sophistication of smartphone vulnerabilities. (Most of the surveys focus only on a
specialized area – infrastructure base security – and ignore highly relevant security
and privacy threats. In this survey, we have attempted to cover the complete spec-
trum of challenges in mobile security: mobile malware and their types, infection
vector and vulnerabilities, challenges for smartphone security systems, compre-
hensive analysis of malware and privacy leaks detection, security tools and their
features relevant to the OS platform, detection accuracy and the false alarm rate
of an approach, and overheads in terms of processing.

The major contributions of this survey paper are: a focus on the niche of malicious
applications detection related to security and privacy on smartphone platforms,
generalizing a comprehensive malicious smartphone applications detection frame-
work as a guideline for future development by vendors and security researchers,
ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 41

a comprehensive analysis of recently proposed techniques utilized by smartphone
security and privacy analysts, and a survey of recently proposed tools using these
techniques, along with their significance and shortcomings.

REFERENCES

1. Gartner, “Gartner says worldwide smartphone sales soared in fourth quarter of 2011 with 47
percent growth,” http://www.gartner.com/it/page.jsp?id=1924314 [last-viewed-July-2-2012],
2012.

2. ——, “Gartner says worldwide smartphone sales soared in fourth quarter of 2011 with 47
percent growth,” http://www.gartner.com/it/page.jsp?id=2017015 [last-viewed-July-2-2012],
2012.

3. A. Gupta, R. Cozza, C. Milanesi, and C. Lu, “Market share analysis: Mobile devices, world-
wide, 2q12,” http://www.gartner.com/resId=2117915 [last-viewed-November-05-2012], 2012.

4. Product-News, “The new version of kaspersky mobile security provides maximum protection
against malware and web-borne threats,” Caspersky Labs, 2012.

5. NDTV-Gadgets, “Smartphones under malware attack: Symantec, mcafee,” [Online]
http://gadgets.ndtv.com/mobiles/news/smartphones-under-malware-attack-symantec-mcafee-
232792 [last-viewed-July-2-2012], 2012.

6. Juniper-Report, “Mobile threats report,” Juniper Networks Inc., 2012.

7. p. Paul Wood, G. Egan, K. Haley, T. Tran, O. Cox, H. Lau, C. Wueest, D. McKinney et al.,
“Symantec internet security threat report trends for 2011,” Symantec Corporation, vol. 17,
2012.

8. Mobile-Threat-Report, “Mobile threat report q1 2012,” F-Secure Labs, 2012.

9. Trend-Micro, “3q 2012 security roundup: Android under siege: Popularity comes at a price,”
Research and Analysis, 2012.

10. Best-AntiVirus, “The 3 best antivirus apps to protect your android security,”
http://www.makeuseof.com/tag/3-best-antivirus-apps-android-security/ [last-viewed-July-
3-2012], 2012.

11. McAfee-Threat-Report, “Mcafee q1 threats report finds significant malware increase across
all platforms,” http://www.marketwatch.com/story/mcafee-q1-threats-report-finds-significant-
malware-increase-across-all-platforms-2012-05-23 [last-viewed-July-4-2012], 2012.

12. Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evolution,” in
IEEE Symposium on Security and Privacy. IEEE, 2012, pp. 95–109.

13. C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo, and R. Weinmann, IOS Hacker’s
Handbook. Wiley, 2012.

14. D. Damopoulos, G. Kambourakis, and S. Gritzalis, “isam: An iphone stealth airborne
malware,” Future Challenges in Security and Privacy for Academia and Industry, pp. 17–28,
2011.

15. A. Schmidt and S. Albayrak, “Malicious software for smartphones,” Technische Universität
Berlin, DAI-Labor, Tech. Rep. TUB-DAI, vol. 2, 2008.

16. A. Bose, X. Hu, K. Shin, and T. Park, “Behavioral detection of malware on mobile handsets,”
in International conference on Mobile systems, applications, and services. ACM, 2008, pp.
225–238.

17. P. Szor, The art of computer virus research and defense. Addison-Wesley Professional,
2005.

18. A. Gostev, “Mobile malware evolution: An overview, part 1,” www.viruslist.com, 2006.

19. P. Porras, H. Saidi, and V. Yegneswaran, “An analysis of the ikeeb (duh) iphone botnet
(worm),” http://mtc.sri.com/iPhone/, 2009, accessed: August 08, 2012.

20. M. Adeel and L. Tokarchuk, “Analysis of mobile p2p malware detection framework through
cabir & commwarrior families,” in IEEE International Conference on Privacy, Security, Risk
and Trust. IEEE, 2011, pp. 1335–1343.

21. F-Secure, “Threat description: Virus:w32/duts.1520,” http://www.f-secure.com/v-descs/

dtus.shtml, 2012, accessed: August 08, 2012.

ACM Computing Surveys, Vol. -, No. -, November 2012.

42 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

22. Symantec, “Androidos.fakeplayer,” http://www.symantec.com/security_response/

writeup.jsp?docid=2010-081100-1646-99, 2012, accessed: August 08, 2012.

23. B. Krebs, “Zeus trojan author ran with spam kingpinskrebs on security,” Krebs on Security,
2012.

24. D. Maslennikov, “Sms trojans: all around the world,” http://www.securelist.com/en/

blog/208193261/SMS_Trojans_all_around_the_world, 2011, accessed: August 08, 2012.

25. F-Secure, “Threat description: Trojan:symbos/skulls.d,” http://www.f-secure.com/

v-descs/skulls_d.shtml, 2007, accessed: August 08, 2012.

26. J. Bickford, R. O’Hare, A. Baliga, V. Ganapathy, and L. Iftode, “Rootkits on smart phones:
attacks, implications and opportunities,” in Workshop on Mobile Computing Systems & Ap-
plications. ACM, 2010, pp. 49–54.

27. Symantec, “System infected: Zeroaccess rootkit activity,” http://www.symantec.com/

security_response/attacksignatures/detail.jsp?asid=24377, 2012, accessed: August 08,
2012.

28. MilaParkour, “Contagio mobile - mobile malware mini dump,” http://contagiominidump.

blogspot.com/, 2012, accessed: September 23, 2012.

29. Fortinet, “Adware/sslcrypt!symbos,” http://www.fortiguard.com/av/VID2715273, 2011,
last accessed: August 08, 2012.

30. Mcafee, “Virus profile: Android/apphnd.a,” http://home.mcafee.com/VirusInfo/

VirusProfile.aspx?key=790111, 2012, accessed: August 08, 2012.

31. K. Haataja, K. Hypponen, and P. Toivanen, “Ten years of bluetooth security attacks:
Lessons learned,” Computer Science I Like, p. 45, 2011.

32. A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware detection,” in
Annual Computer Security Applications Conference, 2007, pp. 421–430.

33. Y. Guo, L. Zhang, J. Kong, J. Sun, T. Feng, and X. Chen, “Jupiter: transparent aug-
mentation of smartphone capabilities through cloud computing,” in ACM SOSP Workshop on
Networking, Systems, and Applications on Mobile Handhelds. ACM, 2011, p. 2.

34. M. Chandramohan and H. Tan, “Detection of mobile malware in the wild,” Computer, 2012.

35. Farrukh Shahzad, M. Saleem, and M. Farooq, “A hybrid framework for malware detection
on smartphones using elf structural & pcb runtime traces,” Tech. Report TR-58 FAST-National
University, Pakistan, 2012.

36. Farrukh Shahzad and M. Farooq, “Elf-miner: using structural knowledge and data mining
methods to detect new (linux) malicious executables,” Knowledge and information systems,
vol. 30, no. 3, pp. 589–612, 2012.

37. A. Schmidt, R. Bye, H. Schmidt, J. Clausen, O. Kiraz, K. Yuksel, S. Camtepe, and S. Al-
bayrak, “Static analysis of executables for collaborative malware detection on android,” in
IEEE International Conference on Communications. IEEE, 2009, pp. 1–5.

38. A. Schmidt, J. Clausen, A. Camtepe, and S. Albayrak, “Detecting symbian os malware
through static function call analysis,” in International Conference on Malicious and Unwanted
Software. IEEE, 2009, pp. 15–22.

39. M. Masud, L. Khan, and B. Thuraisingham, “A scalable multi-level feature extraction
technique to detect malicious executables,” Information Systems Frontiers, vol. 10, no. 1, pp.
33–45, 2008.

40. T. Blasing, L. Batyuk, A. Schmidt, S. Camtepe, and S. Albayrak, “An android application
sandbox system for suspicious software detection,” in International Conference on Malicious
and Unwanted Software. IEEE, 2010, pp. 55–62.

41. C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: Automatically detect-
ing potential privacy leaks in android applications on a large scale,” Trust and Trustworthy
Computing, pp. 291–307, 2012.

42. A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “Andromaly: a behavioral
malware detection framework for android devices,” Journal of Intelligent Information Systems,
pp. 1–30, 2012.

ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 43

43. B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, and P. Bringas, “On the automatic cat-
egorisation of android applications,” Consumer Communications and Networking Conference,
2012.

44. D. Barrera, H. Kayacik, P. van Oorschot, and A. Somayaji, “A methodology for empirical
analysis of permission-based security models and its application to android,” in ACM conference
on Computer and communications security. ACM, 2010, pp. 73–84.

45. W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth, “Taintdroid: An
information-flow tracking system for realtime privacy monitoring on smartphones,” in USENIX
conference on Operating systems design and implementation. USENIX Association, 2010, pp.
1–6.

46. Farrukh Shahzad, S. Bhatti, M. Shahzad, and M. Farooq, “In-execution malware detection
using task structures of linux processes,” in IEEE International Conference on Communica-
tions. IEEE, 2011, pp. 1–6.

47. Farrukh Shahzad, M. Shahzad, and M. Farooq, “In-execution dynamic malware analysis and
detection by mining information in process control blocks of linux os,” Information Sciences,
2011.

48. M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Technical report: Detecting capability leaks
in android-based smartphones,” Computer Science NC State University, USA, 2010.

49. L. Liu, G. Yan, X. Zhang, and S. Chen, “Virusmeter: Preventing your cellphone from spies,”
in Recent Advances in Intrusion Detection. Springer, 2009, pp. 244–264.

50. G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra, “Madam: a multi-level anomaly
detector for android malware,” in International Conference on Mathematical Methods, Models
and Architectures for Computer Network Security, 2012, pp. 240–253.

51. A. Schmidt, F. Peters, F. Lamour, C. Scheel, S. Çamtepe, and Ş. Albayrak, “Monitoring
smartphones for anomaly detection,” Mobile Networks and Applications, vol. 14, no. 1, pp.
92–106, 2009.

52. A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “Andromaly: a behavioral
malware detection framework for android devices,” Journal of Intelligent Information Systems,
pp. 1–30, 2011.

53. H. Kim, J. Smith, and K. Shin, “Detecting energy-greedy anomalies and mobile malware
variants,” in International Conference on Mobile Systems, Applications, and Services. ACM,
2008, pp. 239–252.

54. M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of capability leaks
in stock android smartphones,” in Annual Symposium on Network and Distributed System
Security, 2012.

55. I. Witten, U. of Waikato, and D. of Computer Science, WEKA Practical Machine Learning
Tools and Techniques with Java Implementations. Dept. of Computer Science, University of
Waikato, 1999.

56. M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy leaks in ios appli-
cations,” in Network and Distributed System Security Symposium, 2011.

57. C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smartdroid: an automatic
system for revealing ui-based trigger conditions in android applications,” in ACM workshop on
Security and privacy in smartphones and mobile devices. ACM, 2012, pp. 93–104.

58. G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid android: Versatile
protection for smartphones,” in Annual Computer Security Applications Conference. ACM,
2010, pp. 347–356.

59. I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-based malware
detection system for android,” in ACM workshop on Security and privacy in smartphones and
mobile devices. ACM, 2011, pp. 15–26.

60. A. Shabtai, U. Kanonov, and Y. Elovici, “Intrusion detection for mobile devices using the
knowledge-based, temporal abstraction method,” Journal of Systems and Software, vol. 83,
no. 8, pp. 1524–1537, 2010.

61. Y. Shahar, “A framework for knowledge-based temporal abstraction,”Artificial intelligence,
vol. 90, no. 1-2, pp. 79–133, 1997.

ACM Computing Surveys, Vol. -, No. -, November 2012.

44 · Farrukh Shahzad, M Ali Akbar and Muddassar Farooq

62. R. Moskovitch and Y. Shahar, “Medical temporal-knowledge discovery via temporal ab-
straction,” in AMIA Annual Symposium Proceedings, vol. 2009. American Medical Informatics
Association, 2009, p. 452.

63. D. Damopoulos, S. Menesidou, G. Kambourakis, M. Papadaki, N. Clarke, and S. Gritzalis,
“Evaluation of anomaly-based ids for mobile devices using machine learning classifiers,” Security
and Communication Networks, 2012.

64. P. Gilbert, B. Chun, L. Cox, and J. Jung, “Automating privacy testing of smartphone
applications,” Technical Report CS-2011-02, Duke University, Tech. Rep., 2011.

65. S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A. Sadeghi, “Xmandroid: A new android
evolution to mitigate privilege escalation attacks,” in Technical Report TR-2011-04, Technische
Universität Darmstadt, 2011.

66. M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. Wallach, “Quire: lightweight provenance
for smart phone operating systems,” in USENIX Security Symposium, 2011.

67. A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions demystified,”
in ACM conference on Computer and communications security. ACM, 2011, pp. 627–638.

68. E. Chin, A. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-application communi-
cation in android,” in International conference on Mobile systems, applications, and services.
ACM, 2011, pp. 239–252.

69. M. Schultz, E. Eskin, F. Zadok, and S. Stolfo, “Data mining methods for detection of new
malicious executables,” in IEEE Symposium on Security and Privacy. IEEE, 2001, pp. 38–49.

70. M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter, “L4android: a generic op-
erating system framework for secure smartphones,” in ACM workshop on Security and privacy
in smartphones and mobile devices. ACM, 2011, pp. 39–50.

71. W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone applications
in third-party android marketplaces,” in ACM Conference on Data and Application Security
and Privacy, 2012.

72. Y. Park, C. Lee, C. Lee, J. Lim, S. Han, M. Park, and S. Cho, “Rgbdroid: a novel response-
based approach to android privilege escalation attacks,” in Proceedings of the 5th USENIX
conference on Large-Scale Exploits and Emergent Threats. USENIX Association, 2012, pp.
9–9.

73. L. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os and dalvik semantic
views for dynamic android malware analysis,” in Proceedings of the 21st USENIX conference
on Security symposium. USENIX Association, 2012, pp. 29–29.

74. B. Davis, B. Sanders, A. Khodaverdian, and H. Chen, “I-arm-droid: A rewriting framework
for in-app reference monitors for android applications,” IEEE Mobile Security Technologies,
San Francisco, CA, 2012.

75. S. Lee, E. Wong, D. Goel, M. Dahlin, and V. Shmatikov, “Jana: Platform protection for
user privacy,” 2012.

76. S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and B. Shastry, “Towards taming
privilege-escalation attacks on android,” in Network and Distributed System Security Sympo-
sium, San Diego, CA, 2012.

77. A. Bartel, J. Klein, M. Monperrus, Y. Le Traon et al., “Automatically securing permission-
based software by reducing the attack surface: An application to android,” 2012.

78. P. Gilbert, B. Chun, L. Cox, and J. Jung, “Vision: automated security validation of mobile
apps at app markets,” in International workshop on Mobile cloud computing and services.
ACM, 2011, pp. 21–26.

79. D. Wetherall, D. Cho↵nes, B. Greenstein, S. Han, P. Hornyack, J. Jung, S. Schechter, and
X. Wang, “Privacy revelations for web and mobile apps,” Proc. HotOS XIII, 2011.

80. A. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android permissions:
User attention, comprehension, and behavior,” in Symposium on Usable Privacy and Security.
ACM, 2012, p. 3.

81. A. Bauer, J. Küster, and G. Vegliach, “Runtime verification meets android security,” NASA
Formal Methods, pp. 174–180, 2012.

ACM Computing Surveys, Vol. -, No. -, November 2012.

A Survey on Recent Advances in Malicious Applications Analysis & Detection Techniques.. · 45

82. D. Davidson and B. Livshits, “Morepriv: Mobile os support for application personalization
and privacy,” 2012.

83. P. Pearce, A. Felt, G. Nunez, and D. Wagner, “Addroid: Privilege separation for applications
and advertisers in android,” in Proceedings of AsiaCCS, 2012.

84. G. Nunez, “Party pooper: Third-party libraries in android,” 2011.

85. S. Shekhar, M. Dietz, and D. Wallach, “Adsplit: Separating smartphone advertising from
applications,” Arxiv preprint arXiv:1202.4030, 2012.

86. I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo, “Don’t kill my ads!: balancing
privacy in an ad-supported mobile application market,” in Workshop on Mobile Computing
Systems & Applications. ACM, 2012, p. 2.

87. M. Grace, W. Zhou, X. Jiang, and A. Sadeghi, “Unsafe exposure analysis of mobile in-app
advertisements,” in ACM conference on Security and Privacy in Wireless and Mobile Networks.
ACM, 2012, pp. 101–112.

88. M. La Polla, F. Martinelli, and D. Sgandurra, “A survey on security for mobile devices,”
IEEE Communications Surveys & Tutorials, no. 99, pp. 1–26, 2012.

89. W. Enck, “Defending users against smartphone apps: Techniques and future directions,”
Information Systems Security, pp. 49–70, 2011.

90. M. Elfattah, A. Youssif, and E. Ahmed, “Handsets malware threats and facing techniques,”
International Journal of Advanced Computer Science and Applications, vol. 2, no. 12, 2012.

91. M. Becher, F. Freiling, J. Ho↵mann, T. Holz, S. Uellenbeck, and C. Wolf, “Mobile security
catching up? revealing the nuts and bolts of the security of mobile devices,” in IEEE Symposium
on Security and Privacy. IEEE, 2011, pp. 96–111.

92. A. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile malware in the
wild,” in ACM workshop on Security and privacy in smartphones and mobile devices. ACM,
2011, pp. 3–14.

93. Q. Yan, Y. Li, T. Li, and R. Deng, “Insights into malware detection and prevention on
mobile phones,” Security Technology, pp. 242–249, 2009.

94. P. Vinod, R. Jaipur, V. Laxmi, and M. Gaur, “Survey on malware detection methods,” in
Hackers’ Workshop on Computer and Internet Security, 2009, pp. 74–79.

95. D. Damopoulos, S. Menesidou, G. Kambourakis, M. Papadaki, N. Clarke, and S. Gritzalis,
“Evaluation of anomaly-based ids for mobile devices using machine learning classifiers,” Security
and Communication Networks,2011.

ACM Computing Surveys, Vol. -, No. -, November 2012.

View publication statsView publication stats

https://www.researchgate.net/publication/322385379

	cover2
	Farrukh_Survey_v2.0

