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TStructDroid: Realtime Malware Detection using
In-execution Dynamic Analysis of Kernel

Process Control Blocks on Android
Farrukh Shahzad, M. A. Akbar, Salman H. Khan and Muddassar Farooq

Abstract—As the smartphone devices have become a basic necessity and their use has become ubiquitous in recent years, the
malware attacks on smartphone platforms have escalated sharply. As an increasing number of smartphone users tend to use their
devices for storing privacy-sensitive information and performing financial transactions, there is a dire need to protect the smartphone
users from the rising threat of malware attacks. In this paper, we present a realtime malware detection framework for Android platform
that performs dynamic analysis of smartphone applications and detects the malicious activities through in-execution monitoring of
process control blocks in Android kernel. Using a novel scheme based on information theoretic analysis, time-series feature logging,
segmentation and frequency component analysis of data, and machine learning classifier, this framework is able to mine the hidden
patterns in the execution behavior of applications and model it to detect real world malware applications for Android with very low
false alarms. We have used a realworld dataset of 110 benign and 110 malware Android applications. The experiments show that our
framework is able to detect the zero-day malware with over 98% accuracy and less than 1% false alarm rates. Moreover, the system
performance degradation caused by or framework is only 3.73% on average for a low-end Android smartphone, making it ideal for
deployment on resource constrained mobile devices.

Index Terms—Malware Detection, Dynamic Analysis, In-execution Malware detection, Android Security, Smartphone Security
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1 INTRODUCTION

Mobile devices have shifted from being an item of luxury
to an item of necessity over the past couple of decades.
The swift technological improvements in developing low
cost, high power processors and a ubiquitous access to
the Internet has led to the popularity of smartphones.
It has been reported that 419.1 million mobile devices
were in the market by the beginning of year 2012 and
are estimated to become 645 million by the end of year
20121 [1].

With an expected 10 billion mobile devices in the
market by 2016 [2], the high popularity of smartphone
devices has resulted in the development and use of a
plethora of smartphone applications providing diverse
functions such as communication, entertainment, pro-
ductivity and financial transactions. A study of user
behavior on smartphones, carried out by Kaspersky Lab
[3], shows that users tend to use their smartphones for
(1) storing personal information and documents (16%),
(2) Internet surfing (62%), (3) email communication
(53%), and (4) social networking (47%). There are sev-
eral major companies providing smartphone platforms
(operating systems) for the smartphone devices. Market
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1. Among these mobile devices, 144.3 million are smartphones [1].

share analysis for smartphones in second quarter of 2012
shows that Google’s Android based smartphones form
the majority of the overall smartphone market with an
overall share of 64.1%, whereas the closest competitor is
the Apple’s iOS based smartphone (18.8% share) [4].

This high popularity of smartphone devices has
turned the smartphone platforms in to an attractive
target for malicious forces [5]. Due to its popularity and
large market share, Google’s Android platform is facing
the major brunt of malware attack. A sixfold increase in
malware targeting Android platform has been reported
in just one quarter (Jul 2012 - Sep 2012), resulting in
almost 175,000 known malware on Android in Sep 2012
[6]. The majority of these malware belong to Trojans and
Adware categories [7].

Apart from the popularity of Android platform result-
ing in increasing malware threats, there are other factors
that contribute in increasing the threat level to this plat-
form. Android platform supports an open-architecture
for application distribution. This means that anyone can
obtain an Android application from any source and
install it on to the phone. Pirated versions of commercial
Android applications are commonly available at shady
online application stores. The official application store
for Android, known as Google Play Store2, enforces no
strict application review process. This policy of open
architecture is different from some other leading smart-
phone platforms such as iOS and Symbian which require
strict application review, signing and run-time signature

2. https://play.google.com/
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and integrity verification of smartphone applications.
Lack of such mechanisms results in an open playfield
for malware to attack the platform and take advantage
of the vulnerabilities.

The major off-the-shelf mobile anti-malware products
are introduced by companies such as McAfee, Kaspersky,
Avast, Norton, and Lookout [8] etc. which are typically
signature-based. On the other hand, static analysis based
techniques detect malicious patterns from source code
and executable binaries. Both, signature and static analy-
sis based techniques are prone to evasion using common
code obfuscation techniques and polymorphism. More-
over, zero-day (previously unknown) malware pass un-
detected by these products [9] [10]. As mobile devices are
more resource-constrained than their desktop counter-
parts, a viable malware detection system should provide
protection against malware attacks without putting great
strain on computational power, memory resources and
battery utilization [11]. Moreover, zero-day malware de-
tection using efficient dynamic analysis, high detection
accuracy, low false alarms and robustness to evasion are
some of the key factors that must be taken into account
while designing a solution for this problem.

To solve this emerging problem, we propose
TStructDroid: a real-time malware detection
framework that uses in-execution dynamic analysis
of kernel Process Control Blocks on Android platform3.
Using information theoretic analysis, time-series feature
logging, segmentation and frequency component
analysis of data, and machine learning classifier,
this framework is able to detect real world malware
applications for Android while producing very low false
alarms. We have used a realworld dataset of 110 benign
and 110 malware Android applications. The experiments
show that our framework is able to detect the zero-day
malware with over 98% accuracy and less than 1%
false alarm rates. Moreover, the system performance
degradation caused by or framework is only 3.73% on
average for a low-end Android smartphone, making it
ideal for deployment on resource constrained mobile
devices.

The major contributions of our work are as follows:

• We present a novel scheme based on information
theoretic analysis, time-series feature logging, seg-
mentation and frequency component analysis of
data from to mine the hidden patterns in the ex-
ecution behavior of applications.

• Based on this scheme, we propose TStructDroid:
a real-time malware detection framework that uses
in-execution dynamic analysis of kernel Process
Control Blocks on Android platform.

• We have used a relatively large realworld dataset of
110 benign and 110 malware Android applications
to test our proposed framework.

3. The feasibility of using process control blocks for malware de-
tection on Linux and Android have been previously established in
literature [12][13].

• We design a series of experiments with both real-
world and cross-validation scenarios to test the clas-
sification performance of the system. Moreover, the
system performance degradation of the framework
is also measured.

The rest of the paper is organized as follows. We
begin with the description of methodology used to
collect our benign and malaware datasets in Section 2.
We also describe the formation of training and testing
datasets for our carefully designed experiment scenarios.
Afterwards, we present our novel scheme for extraction
of hidden patterns in execution behavior of malicious
processes by utilizing the kernel structures. The com-
ponents of the scheme are accompanied by discussion
and theoretical & empirical validation of the reasoning
behind each step. In Section 4, the major components
of our proposed TStructDroid framework are presented
and the working of each component is discussed in
detail. We present the performance evaluation of the
framework in Section 5. We briefly describe the related
work (Section 6) in the field of dynamic malware analysis
on smartphone platforms and identify the shortcomings
of recently proposed frameworks. Finally, we conclude
with an outlook towards future work.

2 ANDROID - MALWARE & BENIGN DATASETS

The most important part of designing and evaluating
a malware detection framework is the selection of the
dataset. In this section, we discuss the approach towards
selection of the benign and malware datasets and the
brief characteristics of each of them. The malware detec-
tion framework extracts features derived from the pro-
cess control blocks of the processes in the Android kernel
at runtime4. 110 malware and 110 benign applications
have been used in this study. The list of the malware
and benign Android applications used in the datasets is
given in Table 4.

2.1 Benign Dataset

We have selected 110 benign applications for our exper-
iments. These applications have been chosen from the
featured applications on the Google Play Store for An-
droid applications5. We chose the top applications from
different categories (Games, Image Viewers, Sketching
tools, Text Editors, Image Editors, Android Utilities such
as Recorder, Dialer, Maps etc., and Misc. applications)
for the month of August 2012. The criteria for choosing
these applications were: (1) the applications should be
famous/top downloaded so that they are representa-
tive of commonly used user applications, (2) the ap-
plications should belong to different categories for a
diversity in the behavior of the applications, and (3) a

4. The datasets containing the logged process control block features
of both benign and malware applications collected for this study are
available on the website http://www.nexginrc.org.

5. https://play.google.com/store. Last accessed on Dec 1, 2012.
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balance should be maintained of user-interactive (e.g. ed-
itor) and automated/background-service (e.g. download
manager) applications.

2.2 Malware Dataset

Malware for Android has expanded significantly in
numbers during recent years. However, most of the anti-
malware companies are reluctant in sharing the malware
samples collected over a long period. The Contagio Mobile
Malware Mini Dump6 is a publicly available collection
of Android malware. We have collected 110 malware
applications from Contagio Mobile Malware Mini Dump
(collected upto August 2012). The Android applications
in the collected malware dataset belongs to the follow-
ing malware categories: Trojans, Adware, Rootkits, Bots
and Backdoors. Trojans make up for the majority of
Android malware in our dataset. Following in the old
Greek tradition of trojan horses, Trojans usually pose
as legitimate and productive applications. Their is a
hidden trigger that initiates the malicious activity in
the background while the legitimate application executes
in the front. Trojans typically infect other legitimate
applications on the device to convert them to trojans
as well. Some prominent trojan families7 included in
our dataset are: N.Zimto, LuckyCat, Qicsomo, Fake-
Timer, SMSZombie, Loozfon, ZFT, Instagram, FakeTo-
ken, Ginimi, VDLoaded, CounterClank, Gamex, Droid-
DreamLight, FakeInstaller and Arspam Alsalah [14]. This
category of malware usually consists of applications that
try to monitor a user’s behavior (such as surfing patter,
interests etc.) or try to steal important user data (such
as SMS messages, photos, location information, banking
information etc). Some well-known spyware families in
our dataset include Plankton, DougaLeaker, Gonein60x,
Steeks and FindAndCall etc. [14]. Rootkits infect a sys-
tem’s kernel and thus get full access to the system.
The typical use of rootkit exploits is to hide activity of
other malware installed on the system. Moreover, the
rootkits are not run in limited permissions environment
like other types of malware and thus are able to monitor
and modify other applications and sensitive resources
on the smartphone device. Our dataset contains some
well-known Android rootkits such as Z4Root:three, and
ITFUNZ.supertools [14]. Bots are malware applications
that receive commands from a server and perform oper-
ations according to those instructions. They are typically
a part of a large network of bots (known as botnet),
and are used to launch distributed denial of service or
spam attacks. The CI4.updater [14] bot is included in
our dataset. Once a device has been infected through
a particular vulnerability, a backdoor allows an attacker
to create a hidden communication channel with the

6. http://contagiominidump.blogspot.com/. Last accessed - Dec 1,
2012.

7. For interested readers, we provide a complete list of individual
malicious applications of all malware families present in our dataset
[14].

infected device. Even if the exploited vulnerability is
patched later, the attacker can still access the device
through the backdoor. DroidKungfu [14] is a very well-
known example of backdoors in our dataset.

It is important to understand that these categories of
malware are loosely defined and a malware application
may belong to a number of such categories at the same
time. Another important factor which differentiates our
malware dataset from those used in literature is the
very high percentage of Trojanized/Spyware Android
applications. Such smartphone malicious applications
are interactive and typically appear to execute more
like benign ones. The malicious code is typically run
in parallel to typical application execution scenario such
as a Trojan code patch in a popular game. This added
challenge of detecting hidden pattern of malicious be-
havior is useful for testing the efficiency of our presented
framework. Usage of raw execution information from the
kernel is insufficient for detection of this tricky behavior.
To meet this challenge, we present a novel scheme
that analyzes and extracts hidden patterns in execution
behavior utilizing information in kernel structures.

2.3 Creation of Training & Testing Datasets

After describing the composition of the benign and
malware applications in our datasets, we now describe
the two different methodologies that we have used
for creating training and testing datasets using these
benign and malware Android applications. We create
two different scenarios: the first one is based on malware
detection in real life, and the second one is based on
the standard methodology typically used in machine
learning literature.

2.3.1 Realtime Scenario:

In real life scenario, malware detection frameworks can
typically detect the known malware using their sig-
natures. The real significance of the dynamic malware
detection frameworks lies in the detection of zero-day
(previously unknown) malware.

To create a realtime, real-life scenario, we use only one
application in the testing dataset. The rest of the benign
and malware applications are included in the training
dataset. In this way, we have 220 different training and
testing set combinations using the 220 applications (110
benign and 110 malware) in our datasets.

2.3.2 Standard - Cross Validation Scenario:

The 10-fold cross validation is the standard methodology
proposed in machine learning literature for classification
of datasets. We create ten training and testing dataset
combinations (folds) such that in each fold, the testing
dataset consists of randomly chosen 10% of all benign
and 10% of all malware applications while the remain-
ing applications are used in the corresponding training
dataset.
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Although the real-time scenario is more realistic, it
can result in an over-fitting of the classification model
during training skewing the results. Therefore, we also
create scenarios based on the cross-validation strategy to
verify that the high detection rate of our framework is
statistically significant and resistant to the changes in the
training datasets.

3 A NOVEL SCHEME FOR EXTRACTION OF
HIDDEN PATTERNS IN EXECUTION BEHAVIOR
UTILIZING KERNEL STRUCTURES

To dynamically classify a process as benign or malicious,
the underlying tenet for all dynamic malware detection
frameworks is that the execution pattern/behavior of
benign and malicious processes differs significantly
[15][12]. To mine this difference in execution pattern,
we monitor the change in frequency components of the
extracted feature values from the process control block.
In this section, we present our scheme for extraction of
these hidden patterns. This scheme makes up the core
of our malware detection framework. We also present
and prove some important mathematical constructs and
properties for this scheme, and attempt to validate the
classification potential of the extracted information.

We have selected 99 preliminary parameters from
the process control block (task_struct in Android
kernel). Some of the interesting parameters include num-
ber of page frames, volunteer and in-volunteer context
switches, number of page faults, virtual memory used,
CPU time, number of page tables, file system resources,
resource counters of signal structure etc. During the
execution of a process, we periodically log the values of
these parameters. The time interval for logging (we call
it time-resolution δt) has been set as 10 milliseconds8.
We process the logged preliminary features in batches
(or windows).

Overall, our scheme for extraction of hidden patterns
in execution behavior of processes from the logged pre-
liminary features values consists of the following steps:
(1) analyzing the extracted features, (2) shortlisting the
features, (3) removing redundant instances, (4) creating
windows (batches of instances), (5) performing time-
series transforms, and (6) calculating statistical features
from the transformed feature set. We now discuss these
different operations one by one. We are using mathemat-
ical notations and formulations to make the discussion
consistent.

3.1 Time-series Features Shortlisting

The first step is to remove all the redundant features
that do not contribute significantly towards detection of
malware and may mislead the classification process.

8. Later, we present empirical experiments that helped us choose this
value.

Let X(n,i) be the random variable that identifies time-
series values of a single feature fi extracted from process
control blocks of Android’s applications process Pn.

Xn,i = (xn,i,1, xn,i,2, . . . . . . xn,i,T )∀xn,i,t, 1 ≤ t ≤ T

so,
fi = Xn,i, 1 ≤ n ≤ Np

The logged preliminary features can be represented by
the set F :

F = ∀fi | 1 ≤ i ≤ Nf

Some of the preliminary features are ‘indexers’: they
are used as identifiers or indexing purposes. Although
they might be unique/distinct, they are assigned by the
operating system regardless of the behavior of a process.
Therefore, as a first step, we identify and remove such
features Findexers from our features list F .

Findexers = ∀fi ∈ F , fi is an indexing feature

Afterwards, we use time-series difference, mean and
variance of the features as statistical measures to distin-
guish between features with and without distinct values.

Defintion 1. Time-series Difference of a feature. We define
difference of a feature Dfi(t) as the absolute difference between
the consecutive time-series values of the random variable
corresponding to that feature across all processes in a given
time window.

Dfi(t) =
Np∑
n=1

(xn,i,t − xn,i,t−1)

Defintion 2. Time-series Mean of a feature. We define
mean of a featureMfi(t) as the average of the random variable
values corresponding to that feature over all processes in a
given time window.

Mfi(t) =
1

Np

Np∑
n=1

xn,i,t

Defintion 3. Time-series Variance of a feature. We define
variance of a feature Vfi(t) as the mean of the squared
deviation of the random variable values from the expected
value, corresponding to that feature over all processes in a
given time window.

Vfi(t) = σ2
fi(t) =

1

Np

Np∑
n=1

(xn,i,t − µn,i,t)2

We now define certain sets of features that need to be
excluded from the preliminary features list. We consider
ε as a very small and insignificant value.

The set of constant feature values Fconstant is a set of
features for which the time-series difference is insignifi-
cant for all processes.

∀fi ∈ F , fi ∈ Fconstant ⇐⇒ |Dfi(t)| < ε



TSTRUCTDROID: REALTIME MALWARE DETECTION USING IN-EXECUTION DYNAMIC ANALYSIS OF KERNEL PROCESS CONTROL BLOCKS ON ANDROID 5

The set of null feature values Fnull is a set of features
for which the time-series mean is nearly equal to zero
for all processes.

∀fi ∈ F , fi ∈ Fnull ⇐⇒ |Mfi(t)| < ε

Mean and variance of the feature values determine the
distribution of the feature. Distributions having identical
mean and variance across different types of processes do
not help in classification of those types. Therefore, the
features Fident−dist that have identical time-series mean
and variance for both benign and malicious processes
are a good candidate for removal.

∀fi ∈ F , fi ∈ Fident−dist

if and only if,

|Mfi(t)bengin −Mfi(t)malicious| < ε

and
|Vfi(t)bengin − Vfi(t)malicious| < ε

Figures 1 and 2 show plots of time-series mean and
variance of some features that have different time-series
distribution and are, therefore, part of the shortlisted set
of features.
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Fig. 1. Time-series Mean of Some Preliminary Features
for Benign and Malicious Processes
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Fig. 2. Time-series Variance of Some Preliminary Fea-
tures for Benign and Malicious Processes

The features sets that we have identified in this sub-
section are excluded from the final shortlisted set of

TABLE 1
Short-listed task struct parameters (Fsel) of TstructDroid

framework for classification purpose

No. Parameter(s) Description
1 task→state The current processing state of process
2 task→usage.counter Task structure usage counter
3 task→prio It holds dynamic priority of a process
4 task→static prio Static priority or nice value of a process
5 task→normal prio It holds expected priority of a process
6 task→policy Scheduling policy of the process
7 task→active mm→

mmap→vm pgoff
The offset in vm file in page-size units

8 task→active mm→
mmap→
vm truncate count

Truncation count or restart address

9 task→active mm→
task size

The size of task virtual memory space

10 task→active mm→
cached hole size

If non-zero, the largest hole below free-area-
cache

11 task→active mm→
free area cache

First hole of size cached-hole-size or larger

12 task→active mm→
mm users

Number of processes using this address space

13 task→active mm→
map count

Number of memory regions of a process

14 task→active mm→
hiwater rss

Maximum number of page frames owned by the
process

15 task→active mm→
total vm

Address space size of process (in terms of num-
ber of pages)

16 task→active mm→
shared vm

Number of pages in shared file memory map-
ping of process

17 task→active mm→
exec vm

Number of pages in executable memory map-
ping of process

18 task→active mm →
reserved vm

Reserved virtual memory for a process

19 task→active mm→
nr ptes

Number of page table entries of a process

20 task→active mm→
end data

Final address of data section (indicates the
length of data section)

21 task→active mm→
last interval

Last fault stamp interval seen by this process

22 task→nvcsw Number of voluntary context switches of a pro-
cess

23 task→nivcsw Number of involuntary context switches of a
process

24 task→min flt Minor page faults occurred for a process
25 task→maj flt Major page faults occurred for a process
26 task→fs excl.counter It holds file system exclusive resources
27 task→fs→lock The read-write synchronization lock used for file

system access
28–
32

task→signal→
utime, stime, gtime,
cgtime, nvcsw

Resource counters of signal structure for dead
threads and child processes

features. If pfi is the probability that a feature fi is used
for classification, then:

pfi =


0 if fi ∈ Findexers
0 if fi ∈ Fconstant
0 if fi ∈ Fnull
0 if fi ∈ Fident−dist
1 Otherwise

After exclusion of features without classification po-
tential, the shortlisted features set Fsel (listed in Table 1)
is given by:

∀fi ∈ F , fi ∈ Fsel ⇐⇒ pfi > 0

3.2 Redundant feature-instance elimination
Now that we have shortlisted the features that have the
potential to contribute positively towards classification
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of benign and malicious processes, the next step is to
eliminate redundant instances of feature values logged
periodically. As we monitor the process control block of
a process, the parameters in the process control block
change significantly only if the process performs some
new operation or tries to access new resources. While
the process is running, the process control block may
remain the same for a long time, resulting in numerous
duplicate instances. To make the classification process
faster, we add a new instance only if it is not a duplicate
of the previous instance.

Defintion 4. Instance. If xn,i,tj be the value of feature fi ∈
Fsel for process Nn at time instance tj , we define an Instance
In(tj) as the set of values of the selected features logged for
the current process at the time instance tj , then:

In(tj) = {xn,i,tj} | 1 ≤ i ≤ Nfsel
Defintion 5. Difference between Instances. If xn,i,tj be the
value of feature fi ∈ Fsel for process Nn at time instance tj ,
In(tj) be the corresponding instance set, and In(tj−1) be the
instance set at time tj−1, then we define difference between
the instances as the maximum absolute difference between
corresponding feature values.

Dinst(In(tj)) = max |xn,i,tj − xn,i,tj−1 |

for 1 ≤ i ≤ Nfsel .

We remove redundant instances by keeping only one
instance from consecutive instances with a difference of
zero. The selected instances Isel are given by:

In(tj) ∈ Isel ⇐⇒ Dinst(In(tj)) > 0

3.3 Time-series Segmentation and Frequency Infor-
mation Extraction
After shortlisting the important features and removing
the redundant instances, we need to extract sufficient
information from the remaining instances that would al-
low us to train and test the information using a machine
learning classifier. The first step is to segment the time-
series data (Instances) in to different blocks/windows.
For each window, we extract the frequency components
information using Discrete Cosine Transform.

For a given time-series window (segment) k of size
T and process Nn, the frequency information Ci(ω) of
feature fi ∈ Fsel is given by:

Ci(ω) = α(ω)×
T∑
j=1

(xn,i,tj ) cos(
π2j + 1

2T
)

where

α(ω) =


√

1
T for ω = 0√
2
T for ω 6= 0

Each instance Ij contains sets of frequency compo-
nents information for all features.

Ij = {Ci(ω)} | 1 ≤ i ≤ Nfsel

The window Wk is a set of WinSize such instances.

Ij ∈ Wk | WinSize× (k − 1) < j ≤WinSize× k

3.4 Variance Accumulation for Time-series Seg-
ments
We have calculated the frequency components informa-
tion of time-series segments for each feature. We measure
the change in process execution behavior through the
statistical measure Variance. As the change in process
behavior is usually a gradual process and not a sudden
one, we accumulate these changes over a period of
time using Cumulative Variance. In this way, the gradual
changes add up and give us a better estimation of the
overall change in the frequency components of the time-
series segments, thus enabling us to identify the hidden
patterns in the execution of the process.

We calculate variance σ2
Wk

of a window Wk as:

σ2
Wk

=
1

N

N∑
i=1

(Ik − µWk
)

where µWk
is the mean (average) of the frequency

component values for all instances in window Wk.
We start with an initial value of cumulative variance

g0 = 0. We calculate cumulative variance gk for each
window Wk as:

gk = σ2
Wk

+ gk−1

Figure 3 shows the time-series cumulative variances
corresponding to some selected features for benign and
malicious processes. The change in execution pattern for
benign and malicious processes is succinctly captured in
these graphs. A machine learning classifier can learn this
gradual change in the frequency components of these
feature values and generate rules which can be later used
to distinguish between benign and malicious processes.

Now, we list and prove some important properties
regarding the cumulative variance model that we have
formulated for classification. In summary, we want to
prove that the accumulated variance converges after
some time (Theorem 1 and can be modeled with a linear
autoregressive model which is stable. By proving these
properties, and then empirically plotting the coefficients
of this model for our benign and malicious datasets in
juxtaposition (Figure 5), we establish our assertion that
the presented scheme is able to extract valuable hidden
patterns in execution behavior of the processes, and thus,
it is very well suited for classification.

Lemma 1. Let gk be the cumulative variance on window k
of size S where 1 ≤ k ≤ K. k is defined as K = T/S, then:

gk =

K∑
k=1

(E[X2
k ]− E2[Xk])

Proof: We have defined cumulative variance gk as

gk = gk−1 + f(Xk)
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Fig. 3. Time-series Cumulative Variance for Benign and
Malicious Processes

where
f(Xk) = σ2(Xk)

Expanding gk−1 and iterating, we get

gk = f(X1) + f(X2) + f(X3) + .....+ f(XK)

Substituting f(Xk) = σ2(Xk),

gk = σ2(X1) + σ2(X2) + σ2(X3) + . . .+ σ2(XK) (1)

We know that:

σ2(Xk) = E[(Xk − µ)2]

σ2(Xk) = Cov(Xk, Xk)

∴ σ2(Xk) = E[X2
k ]− E2[Xk] (2)

Now, by combining Equation (1) and (2):

gk = E[X2
1 ]− E2[X1] + . . .+ E[X2

K ]− E2[XK ] (3)

Hence,

gk =

K∑
k=1

(E[X2
k ]− E2[Xk]) (4)

Theorem 1. The function gk
gk−1

is given by

gk
gk−1

= 1 +
σ2(Xk)

gk−1
(5)

and it is a bounded function and converges to 1, as time T →
∞
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Fig. 4. Convergence of Cumulative Variance Rate for
task→usage.counter (Theorem 1)

Proof: Using equation 4 in Lemma 1

gk

gk−1

=

K∑
k=1

(E[X2
k]− E2[Xk])

K−1∑
k=1

(E[X2
k]− E2[Xk])

=

K∑
k=1

(E[X2
k])

K−1∑
k=1

(E[X2
k]− E2[Xk])

−

K∑
k=1

(E2[Xk])

K−1∑
k=1

(E[X2
k]− E2[Xk])

=

K−1∑
k=1

E[X2
k] + E[X2

K ]

K−1∑
k=1

(E[X2
k]− E2[Xk])

−

K−1∑
k=1

E2[Xk] + E2[XK ]

K−1∑
k=1

(E[X2
k]− E2[Xk])

=
E[X2

K ]

K−1∑
k=1

(E[X2
k]− E2[Xk])

−
E2[XK ]

K−1∑
k=1

(E[X2
k]− E2[Xk])

+
1

1−

K−1∑
k=1

E2[Xk]

K−1∑
k=1

E[X2
k
]

−
1

1−

K−1∑
k=1

E[X2
k
]

K−1∑
k=1

E2[Xk]

When accumulated variance is large,
K∑
k=1

E[X2
k ]�

K∑
k=1

E2[Xk]

Therefore, as lim
gk−1→∞

K−1∑
k=1

E2[Xk]

K−1∑
k=1

E[X2
k ]

→ 0,

K−1∑
k=1

E[X2
k ]

K−1∑
k=1

E2[Xk]

→∞

and
E[X2

K ]
K−1∑
k=1

(E[X2
k ]− E2[Xk])

,
E2[XK ]

K−1∑
k=1

(E[X2
k ]− E2[Xk])

→ 0

thus, by applying the limits to the above equation for
gk
gk−1

becomes

lim
gk−1→∞

gk
gk−1

= 1

Theorem 2. The presented model – variance accumulation
of frequency components obtained using DCT, over the time
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varying windows of PCB parameters of benign and malicious
processes – is linear and stable.

Proof: AR(p) represent an autoregressive model of
order p. We define gk according to AR(p) model as
follows:

gk = c+

p∑
i=1

ϕigk−i + εk

where ϕ1 . . . ϕp are the parameters of the model, p is
empirically evaluated as 4 and c = 1. For the model to

be stable, the roots of polynomial zp−
p∑
i=1

ϕzp−i must lie

in the unit circle.
AR parameters are calculated using method of mo-

ments (Yule walker equations)

γm =

p∑
k=1

ϕkγm−k + σ2
εk
δ (6)

Where, m = 1, ...., p, σ2
εk

is the standard deviation of
the input noise εk, γm is the autocorrelation function
of gk. Equation (6) forms a system of equations that
can be represented in matrix notation and solved for
{ϕk;m = 1, 2, 3....., p}, once autocorrelation function γm
of gk is known. For m = 0, we solve separately using
the following equation.

γ0 =

p∑
k=1

ϕkγ−k + σ2
ε

This can be solved for σ2
ε once ϕm are known. After

evaluating the model fit in all processes, we find that
the average model fit measure is ≈ 85%. This proves
our initial hypothesis that the variance accumulation
of frequency components obtained using DCT, over the
time varying windows of PCB parameters of benign and
malicious processes can be modeled by a linear, stable
statistical model. By visualizing the coefficients of statis-
tical autoregressive (AR) model (see Figure 5), we can
make sure that the underlying process model of benign
and malicious applications is intrinsically different.

4 TSTRUCTDROID FRAMEWORK

In this section, we present the architecture of TStruct-
Droid framework for detection of malware applications
on Android smartphones. This framework employs the
in-execution dynamic analysis scheme presented in Sec-
tion 3, based on time-series analysis of features obtained
from monitoring of kernel process control blocks9 on
Android powered smartphones.

When a new application is launched on Android, the
Binder IPC mechanism is used for sending a message
to the Zygote process. The Zygote process is a special

9. Process Control Blocks in Linux/Android kernel are typically
referred to as Task Structures (task_struct).
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Fig. 5. 3D Visual Representation of Autoregressive Mod-
els for Benign and Malware processes

process on Android which is basically an instance of
Dalvik VM with core libraries loaded as read-only. The
Zygote process forks a new process, resulting in the new
application being launched in a new Dalvik VM without
unnecessary copying of shared core libraries [16]. As a
consequence of the fork system call from Zygote, the
kernel creates a child process and adds its process control
block (task_struct) to a doubly linked circular linked
list. The scheduler is responsible for execution of these
processes in a multi-tasking manner.

The TSStructDroid framework runs in the kernel space
as a (Loadable kernel module) LKM. Rooting is required
on an Android supported device to get root privileges
for loading and executing the kernel module. We have
compiled and tested the kernel module on Samsung
Galaxy Young device with Android Gingerbread dis-
tribution (Android 2.3.6, Kernel version 2.6.35.7). The
kernel module executes periodically and performs the
dynamic analysis of the user processes under execution.

The framework consists of the following three com-
ponents: (1) Features Logger, (2) Features Analyzer &
Processor, and (3) Classification Engine. The kernel mod-
ule periodically extracts and dumps the contents of the
process control blocks of the running processes from
the doubly linked list of task_structs using the Fea-
tures Logger component. Features Analyzer & Processor
component is responsible for analyzing the extracted
features, shortlisting the features, removing redundant
instances, performing time-series transforms, and calcu-
lating statistical features from the transformed feature
set. In the end, the Classification Engine uses tree based
classifier to build classification rules and uses voting on
a window of feature instances to determine if the process
in execution is performing any malicious activity.

The architecture of the proposed framework is shown
in Figure 6. Now we explain the working of each com-
ponent of the framework in detail.

4.1 Features Logger
From the 99 preliminary parameters from the process
control block (task_struct in Android kernel), our
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Fig. 6. Block diagram of malicious applications detection on Android in realtime using process control blocks (task struct) - process flow in user and kernel space

scheme has shortlisted 32 features as described in Section
3. These shortlisted features are also listed in Table 1. The
Features Logger component is responsible for logging
these parameters. The logging is done periodically and
for each process control block in the task_struct
circular linked list. The feature analyzer processes the
logged preliminary features in batches (or windows).

4.2 Features Analyzer

The Features Analyzer component analyzes the extracted
features and implements the presented scheme for ex-
traction of hidden patterns. It is responsible for remov-
ing redundant instances, creating windows (batches of
instances), performing time-series transforms, and cal-
culating statistical features from the transformed feature
set (described in detail in Section 3).

4.3 Classification Engine

After mining the variation in frequency components of
the current time-series segment (representing the exe-
cution behavior of the processes), we use a machine
learning based classifier to judge a process as benign
or malicious. To choose a classifier, we first visualize the
statistical information in the frequency components of
the shortlisted features. Information Gain (IG) and In-
formation Gain Ratio (GR) of the frequency components
are extracted. Figure 7 shows graphs of the IG and GR
for the frequency components related to some selected
features.

It turns out that the selected features have high In-
formation Gain and Information Gain Ratio. Decision-
Tree based classifiers use IG and GR for building and
pruning decision tree models. Therefore, a decision tree
based classifier such as J48 is an ideal choice for our
framework. Moreover, in [17], it is shown that J48 is
resilient to class noise because it avoids over fitting
during learning and also prunes a decision tree for an
optimum performance.
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Fig. 7. Information Theoretic Analysis of Frequency Com-
ponents Related to Shortlisted Features Set Fsel

4.4 Voting Method & Alarm
The classifier gives Benign|Malicious verdict for the fre-
quency components in each time-series segment. We
use a voting method for making a final decision. If
among Wvote consecutive segments, more than half of
the segments are declared as malicious, an alarm is
raised and the process is killed. Otherwise, the process
(and its dynamic analysis) continues to execute.

5 PERFORMANCE EVALUATION

In this section, we present the performance evaluation
of our proposed framework. We have evaluated our
framework on a dataset of 110 benign and 110 malicious
real-world Android applications.

5.1 Classification Performance
In a typical two-class problem, such as malicious process
detection, the classification decision of an algorithm may
fall into one of the following four categories: (1) true
positive (TP), classification of a malicious process as ma-
licious, (2) true negative (TN), classification of a benign
process as benign, (3) false positive (FP), classification
of a benign process as malicious, and (4) false negative
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(FN), classification of a malicious process as benign.
We measure the classification performance using three
standard parameters: (1) Detection Rate (DR = TP

TP+FN ),
(2) False Alarm Rate (FAR = FP

FP+TN ), and (3) Detection
Accuracy (DA = TP+TN

TP+TN+FP+FN ).
As described in Section 2, we evaluate our framework

using two different scenarios (Real-time Scenario and
Standard cross-validation Scenario). We vary the time-
resolution (δt) after which features are logged and the
size of each segment (T ). The classification results for
Real-time scenario and Cross-validation scenario exper-
iments are listed in Table 2. The time resolution δt
is varied from 10ms to 40ms, and Segment Size T is
varied between 5, 10, 20 and 40 instances of frequency
components information.

5.1.1 Real-time Scenario:
As described in Section 2, there are 220 different training
and testing datasets in this scenario, each representing a
case of zero-day malware detection. The results in Table
2 indicate that our framework is able to detect zero-
day malware applications on Android with a detection
rate of above 98% and a False Alarm Rate below 1%
consistently. The overall detection accuracy lies within
98.6− 99.5%. These results illustrate the strength of our
framework in detecting zero-day malware by analyzing
the in-execution patterns in the process control block
structure of the applications.

5.1.2 Standard Cross-validation Scenario:
As described in Section 2, we create 10 different folds
for training and testing. The results shown in the Table
2 indicate that our framework is able to detect malware
applications on Android with a detection accuracy of
above 92% consistently. The detection rate lies within
90 − 93.6%. This means that the framework detected
at least 9 out of every 10 randomly chosen malware
applications for which it was not trained. However, the
False Alarm Rate is relatively higher and varies between
5.4% and 7.3%.

We now discuss the effect of changing the values of
different choice parameters of the framework. For each
choice parameter, we first describe the expected effect of
a variation in its value, and then validate this reasoning
through the presented experimental results.

5.1.3 Effect of change in Time Resolution (δt):
As specified earlier, we use the term time resolution
(δt) to specify the time interval after which values of
parameters in the process control block structure of a
process are logged. There are some important trade-
offs that need to be kept in mind while choosing a
suitable value for δt. A small value of δt means that the
process will be monitored more frequently resulting in a
detection of minor variations in the parameters. This is
especially useful for processes that carry out a distinct
malicious activity for a very short time. However, this

can also lead to higher false alarms as the short time
change in activity may not be a strong indicator of a
malicious activity. Choosing a larger value for δt can
significantly help in reducing the processing overhead
as the monitoring of the process is done less frequently
resulting in fewer context switches and fewer memory
and timing spent in classification. From Table 2, we ob-
serve that a change in δt has little effect on the detection
rate. For example, the detection rate stays 99.09% (Real-
time) and 90% when δt is varied from 10ms to 40ms
(T = 5,Wvote = 30). However, the FAR decreases from
7.27% to 6.36% (Cross-validation) when δt is varied from
10ms to 40ms (T = 40,Wvote = 30). The overhead of the
framework decreases by a factor of 4 for δt = 40ms as
compared to δt = 10ms.

5.1.4 Effect of change in Segment Size (T ):
As specified earlier, we divide the time-series data into
segments of fixed size before calculation of frequency
components. We expect the increase in the number of
instances in a segment (T ) to result in a slight increase
in detection accuracy as better frequency component
analysis could be performed. However, a large value of
T means that each segment would be processed after a
longer delay, hence the delay in the detection of a mal-
ware would be increased. The results in Table 2 support
our reasoning. There is a slight increase in detection ac-
curacy (99.1% to 99.55% for Real-time, 92.27% to 93.64%
for Cross-validation) when Segment Size T is increased
from 5 instances to 40 instances (δt = 40ms,Wvote = 30).

5.1.5 Effect of change in Voting Window Size (Wvote):
The classifier gives Benign|Malicious verdict for the fre-
quency components in each time-series segment. As de-
scribed earlier, we use voting on a window of segments
to make the decision. Similar to the effect of variation
in segment size, an increase in the size of this param-
eter Wvote should increase the detection accuracy and
decrease the false alarm rate. A large value ofWvote how-
ever would increase the detection delay, and might also
result in missing tiny malicious activities/applications
which only run for a short time. The results in Table
2 have been reported for a fixed value of Wvote = 30
segments. We empirically chose this value by varying the
value of this window and observing the change in DA
and FAR. Figure 8 shows that a value ofWvote = 30 seg-
ments results is an optimal choice for increasing DR and
reducing FAR for Realtime scenario (δt = 10ms, T = 10).
The results for cross-validation scenario are similar to
Figure 8 and are therefore left out to avoid repetition.

It is evident from these results that the framework is
able to detect zero-day malware with a high detection
accuracy, and produces low false alarm rate.

5.2 Processing Overheads
Classification accuracy of a malware detection frame-
work is very important. However, if this accuracy comes
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TABLE 2
Classification Performance Results for Real-time & Cross-validation scenarios

Time Resolution Segment Size Voting Window Size Real-Time Scenario (%) Cross-validation Scenario (%)
(δt ms) (T instances) (Wvote segments) DR FAR DA DR FAR DA

10 5 30 99.09 0.91 99.1 90 5.45 92.27
10 10 30 99.09 0.91 99.1 90 5.45 92.27
10 20 30 99.09 0.901 99.55 90.91 5.45 92.73
10 40 30 98.18 0.901 98.64 93.64 7.27 93.18
20 5 30 99.09 0.909 99.1 90 5.45 92.27
20 10 30 99.09 0.909 99.1 90.91 5.45 92.73
20 20 30 99.09 0.909 99.1 90.91 5.45 92.73
20 40 30 98.18 0.909 98.64 90 5.45 92.27
40 5 30 99.09 0.909 99.1 90 5.45 92.27
40 10 30 99.09 0.909 99.1 90.91 5.45 92.73
40 20 30 99.09 0.91 99.55 90.91 5.45 92.73
40 40 30 100 0.91 99.55 93.64 6.36 93.64
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Fig. 8. Effect of change in Voting Window Size Wvote

(Real-time Scenario, δt = 10ms, T = 10 instances)

with an excessive performance overhead, users are more
likely to disable/remove it in an attempt to make their
smartphones more responsive. In this section, we dis-
cuss the processing overhead imposed by our proposed
framework.

5.2.1 Device under test:
The experiments were performed on a Samsung Galaxy
Young S5360 device with an 832 MHz ARMv6 processor,
290 MB RAM and 160 MB built-in storage. We decided to
use a low end device for the experiments so as to bench-
mark the performance of our framework in a strictly
limited memory and processing resources configuration.

5.2.2 Estimation of processing overhead:
To calculate the processing overhead, we first estimated
the running time of all components of the framework
in one classification cycle. Assume that we use a time-
resolution of δt = 10ms. Moreover, for the purpose
of this discussion, we choose a segment size T = 10
instances and voting window size Wvote = 30 segments.
One classification cycle would take place in a time period
of δt× T ×Wvote = 3000ms.

The features are logged after time δt. Therefore, there
is one context switch and 32 features are logged after
every 10ms. Through multiple iterations and averaging
the results on our low-end device, we estimate that one

such operation takes 48.8284µs to complete. Checking if
the instance is redundant (same as last logged instance)
and eliminating it results in an overhead of approx. 30µs.
For T = 10 and Wvote = 30, there would be an average
overhead of 10× 30× (48.8284µs + 30µs) = 23.648ms in
one classification cycle for context switches, logging and
redundant instances elimination.

Calculation of frequency components in a segment
through Discrete Cosine Transform (DCT) takes 320µs
on average for the 10 × 32 matrix of feature values in
one segment (30×320µs = 9.6ms per classification cycle),
while calculation of accumulated variation of these fre-
quency components takes on average approx. 570.63µs
per segment (30×570.63µs = 17.119ms per classification
cycle) on our low-end Android device. The testing phase
of J48 classifier consists of simple numerical comparisons
as the rules in the decision tree are fired. We estimate
that this testing process introduces a delay of 5µs per
segment (30 × 5µs = 0.15ms per classification cycle) for
the classification of the activity during that time segment
as benign or malicious. The voting process takes approx.
0.03ms for making a decision and raising an alarm if
needed.

Therefore, in a classification cycle occurring over a
period of 3000ms, the combined estimated overhead of
all components of the framework on average is approx.
23.648ms + 9.6ms + 17.119ms + 0.15ms + 0.03ms =
50.547ms. This corresponds to an average processing
overhead of 1.685%. A low overhead of 1.685% makes
the proposed framework an ideal candidate for malware
detection on resource constrained mobile device.

5.2.3 System performance degradation:

Although, there may be only one application running
in the foreground, a typical Android based smartphone
has system services/background applications running at
the same time. Therefore, the actual performance degra-
dation in the presence of the framework may be sig-
nificantly higher. Moreover, different applications have
different execution patterns. Some applications are CPU
intensive, while others tend to use I/O resources more
often. Similarly, the memory requirements of different
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TABLE 3
System Performance Degradation Analysis on Android

Application Baseline Exec. Exec. Time with Overhead
Time (s) TstructDroid (s) (%)

Zip (Archive) 127.2 131.5 3.27
Zip (Best Compress) 67.86 69.94 2.97
Zip (Best Speed) 50.39 52.01 3.11
Zip (Deflated) 132.12 141.81 6.83
Zip (Filtered) 147.59 154.27 4.33
File Copy 190.6 196.95 3.22
File Search 131.68 134.91 2.4
Average 3.73

applications differ significantly resulting in variable fre-
quency of page faults. Therefore, the actual degradation
in the performance may be different for different types
of applications.

We have performed experiments to measure the per-
formance degradation experienced by an application
when the framework is in full operation. We have cre-
ated an ensemble of custom Android applications each of
which performs different operations. Some of these op-
erations are CPU-intensive, some are I/O-bound, while
some others are a combination of both behaviors. The
algorithms for these operations have variable memory
requirements as well. These operations include five dif-
ferent algorithms for file compression, a file (folder)
copy operation and text search within file contents. Four
different folders containing different files (total folder
size: 425 MB, 500 MB, 850 MB and 1275 MB) have been
used as input to these applications. After performing
the experiments on different inputs and for multiple
iterations, average performance degradation results are
reported in Table 3. As expected, the performance over-
head varies with the type of operation, and the average
performance overhead is comparatively higher (3.73%).
However, an average overhead of 3.73% still makes the
proposed framework an ideal candidate for malware
detection on resource constrained mobile device.

5.3 Evasion Analysis and Mitigation Techniques:
We now discuss a couple of ways in which a malware
can attempt to evade getting detected by our framework.
We also describe the available techniques to mitigate
such evasion tactics.

The first strategy that a malware can employ is to
mimic the execution behavior of a benign process. To
do this, a malware must know the values of benign sets
of features and their variation pattern. However, most
of these features depend heavily on the configuration
of a device (such as physical memory, cache, storage
and paging mechanisms etc.), typical use and other
processes & services affecting the kernel state. Therefore,
we expect that estimating such a pattern for a particular
device in a particular state can be daunting for a mal-
ware application. Our experiments include a significant
number of Trojan malware applications (applications that
appear benign and masquerade as common useful appli-
cations), which are efficiently detected by the framework,

therefore, attempting to hide malicious execution pattern
inside benign patterns is not very useful for evasion
purpose.

A much more serious scenario is that of a Rootkit.
Rootkits infect a system’s kernel and thus get full access
to the system. The typical use of rootkit exploits is to
hide activity of other malware installed on the system.
Moreover, the rootkits are not run in limited permissions
environment like other types of malware and thus are
able to monitor and modify other applications and sen-
sitive resources on the smartphone device. A rootkit can
either monitor another benign process on the system and
make the malware application mimic similar behavior,
or it can simply fool the framework in to reading the
process control block of another benign process when
an attempt is made to read process control block of
the malware. It can even simply stop the framework
from working. However, the problem of rootkits is well
known in the OS security community for years now.
Moreover, having a rootkit installed on the system means
that the system is already compromised. It is possible
to mitigate this threat by using our proposed frame-
work in conjunction with one of the several available
rootkit detection frameworks for Android (and other
smartphones) [18] [19] [20].

6 RELATED WORK

Dynamic malware detection techniques intend to de-
tect malicious programs during or after the program
execution by leveraging the runtime information. Such
techniques may involve monitoring execution patterns of
programs, performing the taint-analysis and estimating
their impacts on the OS. As a result, they are able to with-
stand code obfuscation or polymorphism techniques.
A number of dynamic malware detection frameworks
have been proposed in literature. In this section, we
describe some of the latest proposed frameworks and
their shortcomings.

Dini et al. have presented a multilevel anomaly
detection technique for detecting Android malware
(MADAM) [15]. The proposed framework operates in
kernel and user space simultaneously and is capable of
detecting previously unseen, zero-day malicious appli-
cations. A rich feature set is derived due to a multilevel
view of the system events in both spaces. The K-nearest
neighbors (KNN) algorithm is then applied during clas-
sification process. The operation of the framework can be
divided into training, learning and operative phases. The
machine learning classifier can adapt to new changes
by incorporating new feature vectors in training and
learning set at run-time. An average detection rate of
93% along with an average false positive rate of 5% is
reported upon evaluation on a small dataset.

A hybrid framework for automatic malware detection
Smartdroid is proposed in [21] which monitors user in-
terface interactions. In the static analysis, a static path
selector builds activity control graphs and function call
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graphs. Function call graphs are updated for indirect
& event driven API calls by employing the technique
given by Woodpacker [22]. The dynamic analysis is
performed by making a modification in source code
of Android framework while a Restrictor component is
added to limit the new activities that are created after
UI interaction. This framework is suitable only for online
analysis due to its requirement of changes in the Android
framework and the high analysis time overhead. During
the analysis, some of the complicated indirect UI-based
trigger conditions were also missed.

TaintDroid [23] is an information flow tracking tool
for Android smartphones that gives dynamic taint track-
ing capability to the system. This framework can track
multiple sources of private data by applying labels to
the sensitive data. These labels work on four levels of
tracking namely variable-level, method-level, file-level
and message-level. An alarm is raised if the labeled
data leaves the system through an un-trusted third
party application. Authors have evaluated TaintDroid
extensively over thirty most commonly used android
applications and zero false positive is reported. System
overhead is large due to labels storage adjacent to sen-
sitive data and their propagation. An average of 14%
processing overhead in executing Java instructions and
an average of 4.4% memory overhead is observed. The
major limitation of TaintDroid is that it only looks for
explicit information flow; therefore, it is still possible to
circumvent taint propagation through implicit flow of
information.

In [24], the authors have proposed DroidScope which
is a multilevel semantic analysis tool that performs
dynamic profiling and information tracking to detect
malicious behavior and privacy leaks in Android based
smartphone applications. The tool runs in a virtual en-
vironment and logs instruction traces, API calls (at OS
level and Dalvik VM level) and uses taint analysis to
discover leakage of sensitive information. The tool has
been tested on only two real world malware samples.

Android Application SandBox framework is proposed
in [25] for malicious software detection on Android.
This framework first performs static analysis of user
applications. The applications are then transmitted to a
remote server that executes them in the sandbox and
performs clustering and analysis of the generated logs
to detect malicious patterns. The dataset used for testing
Sandbox is small and analysis of the time and memory
overhead is also not included. Another framework that
uses similar concept of decoupled security is an API
based malware detection system Paranoid Android [26].

Burguera et.al have developed a dynamic framework
called Crowdroid which recognizes Trojan-like malware.
It takes into account the fact that genuine and trojan af-
fected applications differ in types and number of system
calls during the execution of an action that requires user
interaction. Authors have reported results on a small
dataset. The false-alarm rate is significantly high (20%).
The authors have not discussed the robustness of their

features set [27].
Andromaly is another IDS which monitors both the

system and user behaviors by observing several param-
eters, spanning from sensors activities to CPU usage
[28]. The authors have developed four custom malicious
applications to evaluate the ability to detect anomalies.
They have created four different training/testing scenar-
ios and have reported competitive results. Andromaly
degrades performance of smartphone by 10% with the
malware detection time of 5 sec. Also, it is not evaluated
over real-world Android malware dataset.

Confused deputy attacks — (deputing tasks to a more
privileged application through publicly defined inter-
faces such as Intents) — allows an application escalate its
privileges indirectly. The authors of [29] have proposed
Quire framework that attempts to solve this problem by
restricting the inappropriate use of application’s permis-
sions through its public interface and providing a trusted
communication mechanism between applications using
remote procedure calls.

Some of the common shortcomings for dynamic mal-
ware detection approaches in published literature in-
clude the following: (1) Significant processing overheads,
(2) Evasion through mimicry attacks, (3) High false alarm
rates, and (4) Lack of testing on real-world malware
dataset.

7 CONCLUSION

As the smartphone devices have become a basic ne-
cessity and their use has become ubiquitous in recent
years, the malware attacks on smartphone platforms
have escalated sharply. As an increasing number of
smartphone users tend to use their devices for storing
privacy-sensitive information and performing financial
transactions, there is a dire need to protect the smart-
phone users from the rising threat of malware attacks.
In this paper, we have presented a realtime malware
detection framework for Android platform that performs
dynamic analysis of smartphone applications and detects
the malicious activities through in-execution monitoring
of process control blocks in Android kernel. Using in-
formation theoretic analysis, time-series feature logging,
segmentation and frequency component analysis of data,
and machine learning classifier, this framework is able
to detect real world malware applications for Android
while producing very low false alarms. We have used
a realworld dataset of 110 benign and 110 malware
Android applications. The experiments show that our
framework is able to detect the zero-day malware with
over 98% accuracy and less than 1% false alarm rates.
Moreover, the system performance degradation caused
by or framework is only 3.73% on average for a low-end
Android smartphone, making it ideal for deployment on
resource constrained mobile devices.
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TABLE 4
List of Collected Benign and malware Applications

No Benign Apps No Benign Apps No Malicious Apps No Malicious Apps
Games 55 baum.ImageFaker-8 Trojans 58 gonein604

1 vszombies 56 picsart.studio-35 1 DDS.STiNiTER 59 gonein605
2 papertoss 57 shinycore.picsayfree 2 M.space.Sexypic 60 Dougalek.-gamatome
3 candydroid.breakpoint Misc. 3 N.ZitMo.Sec.Prim1 61 Dougalek.sir-gamatome
4 DragRacing 58 scmonkeys.pickup 4 N.ZitMo.Sec.Prim2 62 Dougalek.himatubu-
5 doodle.retaurant 59 wpaper.bkgrnd.hd 5 N.ZitMo.Sec.Prim3 63 Dougalek.out-tubebe
6 droidhen.car3d 60 android.bestapps-35 6 N.ZitMo.Sec.Prim4 64 Dougalek.tube-gatome
7 forestman 61 evernote.skitch097 7 N.ZitMo.Sec.Prim5 65 Dougalek.jp.waraeru-
8 ectricsheep.edj 62 bbt.downloadall 8 LuckyCat.Service 66 Plankton.zoric.celebrity
9 pagossoft.trialdemo 63 jcwp.S4305 9 Qicsomos.rrieriq 67 Plankton.butterflies
10 bmx-b+B39oy+B36 64 lifequotes 10 com.zft 68 Plankton.chompsms
11 BubbleShoot-4 65 penguinfree-16 11 FakeInstagram-are.app 69 Plankton.SkatingMadnessP
12 catvsdogfree 66 jp.fujivol-15 12 FakeTimer.btm.ser 70 Plankton.Puzzle.Tales
13 icenta.sudoku.ui 67 shant.app.jokes 13 FakeTimer.ctm.ser 71 Plankton.Livewallpaper
14 junerking.pinball 68 krzysiek.afc.iqt-7 14 FakeTimer.dtm.ser 72 FindAndCall.co.egv
15 unblockmefree 69 simple.a-22 15 FakeTimer.k.ser 73 BatteryDoctor
16 kmagic.solitaire 70 jraf.android.nolock 16 FakeTimer.mtm.ser 74 Fake-token.generator
17 motoxmayhem1lite 71 .wordsearchfree.arff 17 PJApps.LivePrints 75 why.whackAMole
18 oldwang1.darts 72 cing.spades-ads.arff 18 SMSZombie.gmdcd 76 Steek-ieldBadCompany2
19 polarit.thunderlite 73 d.app.dialertab.arff 19 SMSZombie.dh 77 Steek-10D78.BloonsTD4
20 reverie.bubble 74 le.android.talk.arff 20 SMSZombie.livepicker 78 Steek-llOfDutyZombies
21 fallingball 75 m.android.email.arff 21 SMSZombie.hxmv696 79 Steek-RioCityofSaints
22 toiletpaper 76 m.awesome.facts.arff 22 SMSZombie.xqxmn18 80 Steek-i-T10D78.FIFA12
23 susichain.activity 77 mots.WordSearch.arff 23 SMSZombie.zqbb1221 81 Steek-WestCoastHustle
24 rovio.angrybirds 78 newbenignfilelist 24 SMSZombie.lzll 82 Steek-GlobalWarRiot
25 bubble8 79 ngtech.rushhour.arff 25 SMSZombie.-albumsho- 83 Steek-.JetpackJoyride
26 tapglider-5 80 om.skype.raider.arff 26 Vdloader.Ninja-Chicken 84 Steek-D78.MaddenNFL12
27 osaris.turboflydemo 81 pp.controlpanel.arff 27 Vdloader.LiveWPcube 85 Steek-0D78.TouchGrind
28 lightracer-21 82 pp.weatherclock.arff 28 Loozfon.lin.ero 86 Steek-T10D78.RopenFly
29 aifactory.chess.free 83 roid.pulsepaper.arff 29 Loozfon.ap.ken 87 Steek-8.NinJumpDeluxe

Image Viewer 84 s.category.quiz.arff 30 AngryBirds.rovio.ads 88 Steek-0D78.WorldOfGoo
30 imageshrinklite 85 world.DoYouKnow.arff 31 FakeToken.generator 89 Steek-8.ZombieHighway
31 roidapp.photogrid Android Apps 32 Counterclank.ladies3 90 Steek-Ipad2App
32 perfectviewer 86 android.browser 33 MMarketPay.mediawoz BackDoors
33 thinkdroid.amlite 87 android.youtube 34 MMarketPay.mediawoz2 91 DroidKungFu.cuttherope
34 ImageViewer 88 android.apps.maps 35 Geinimi.JewelBears 91 DroidKungFu-pl.byq
35 androidcomics.acv 89 android.deskclock 36 Geinimi-A.gamevil 93 DroidKungFu.myvpn
36 imageviewerminor 90 anndroid.calander 37 Geinimi.Shoppers.sgg.sp Root Exploits
37 jsimagefinder 91 android.calendar 38 Geinimi.Kosenkov.Pr 94 ITFunz.supertools

Sketch Tools 92 android.settings 39 Geinimi.Chinese.maps 95 psufou.su
38 bejoy.minipaint 93 p.voicerecorder 40 Gamex.SD-Booster 95 Z4root:three
39 bejoy.sketchmovie1 94 anroid.app.camera 41 Gamex.SD-Booster2 97 Lotoor - App2card
40 PicassoMirror 95 app.fmradio 42 Arspam AlSalah 98 Root-smart
41 drawinggame2 Notes 43 Steek.thouch.lite Bots
42 imadain.sketch.tab 96 gss.app.notepad-19 44 Steek.Ipad2App 99 Android-CI4.updater
43 sketchit 97 houmiak.desknote 45 Dialer.VoiceChangeIL Misc.
44 sketchbookexpress 98 systems.super-note 46 FakeAngry.screenofflock2 100 ustwo.mouthoff
45 android.sketch2 99 markspace.fliqnotes 47 FakeAngry.screenofflock 101 android.shotgun

Text Editor 100 com.mbile.notes 48 DroidDreamLight 102 cn.yufu16.merry
46 nsweringMachine 101 movinapp.quicknote 49 FakeInstaller.skyscanner 103 cts.JewelsMania
47 simpletextwidget-5 102 quicknotes.views 50 FingerPrint.screensvr 104 miniarmy.engine
48 pandora.jota-73 103 notepad.color.note 51 Advancedfm-2150 105 instantheartrate
49 BookSite-5 104 suishouxie.freenote 52 Advancedfm-2200 106 andoid.computerlab
50 simplenotepad 105 threebanana.notes 53 Zimto2012.service 107 oregame.drakula
51 paulmach.textedit-15 106 inkpad.notepad.notes 54 Droid-DreamLight 108 HamsterSuper.game

Image Editor 107 .noteeverything SpyWare/Adware 109 per.mobi.eraser-3600
52 photoeditorulitimate 108 my.handrite 55 gonein60 110 zyhamster-Super
53 photo.editor 109 d.demo.notepad3 56 gonein602
54 jellybus.fxfree-18 110 nl.jacobras.notes-12 57 gonein603
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