
Fuzz-Fortuna: A fuzzified approach to generation of
cryptographically secure Pseudo-random numbers

M. Ali Akbar and M. Zulkifl Khalid
College of Electrical and Mechanical Engineering

National University of Sciences and Technology (NUST)
Peshawar Road, Rawalpindi, Pakistan

Email: {ali.akbar.ceme, zulkifl}@gmail.com

Abstract— A fuzzy based adaptive algorithm for the reseeding
operation of Fortuna is presented. Fortuna is a pseudo-random
number generation algorithm, originally suggested by Ferguson
and Schneier[1]. The algorithm is specifically designed to be cryp-
tographically secure from known attacks. However the described
algorithm suffers from a lack of an algorithm which could adapt
the rate of reseeding according to variations in the amount of
truly random data being gathered from the environment at any
time. The Fortuna algorithm performs the reseeding action after
a fixed number of iterations. This paper presents concept as
well as software implementation of a novel technique using fuzzy
approach to tackle this problem. The resulting algorithm has
been named Fuzz-Fortuna. Fuzz-Fortuna has been tested using
various techniques and has shown considerable improvement in
results as compared to the ordinary Fortuna algorithm.

I. INTRODUCTION

A. Background

A pseudorandom number generator (PRNG) is an algorithm
that follows a deterministic procedure to generate a sequence
of numbers that approximate the properties of random num-
bers. The sequence is not truly random in that it is completely
determined by a relatively small set of initial values, called
the PRNG’s state. In contrast a true random number generator
(TRNG) provides truly random data gathered from undeter-
ministic phenomenon occuring in nature.

For cryptographic purposes, random data is required for
generation of keys etc. Truly random data, though ideal for
this purpose, is usually not available at the fast data rate
required. To overcome this problem, many pseudorandom
number generator algorithms have been developed which make
periodic use of truly random data available at low rate to make
their current state undeterministic. These algorithms usually
produce random numbers of sufficient quality to be used in
practical cryptographic scenarios.

Most of these cryptographically secure PRNGs use algo-
rithms which are very hard to be reverse engineered. That is,
the knowledge of a sufficiently large number of consecutive
outputs should not reveal the current state of the generator. The
algorithms ideal for this purpose are hashing and encryption
algorithms e.g. Data Encryption Standard (DES) or Advanced
Encryption Standard (AES). Fortuna is one such algorithm
based on hashing and encryption algorithm. It uses SHA for
hashing and AES for encryption purposes.

B. Problem Identification

Fortuna algorithm uses truly random data gathered from
entropy sources to make its state undeterministic. This process
is known as ‘reseeding’ operation. However, the fortuna algo-
rithm performs the reseeding operation after a fixed number of
iterations. Tests show that the quality of random numbers gen-
erated is increased significantly with increase in frequency of
reseeding operation provided enough random data is available
from entropy sources. This indicates the need of an algorithm
which adopts the frequency of reseeding operation according
to the amount of data being gathered from the environment.

This paper presents a modified version of Fortuna algorithm
namely Fuzz-Fortuna. First of all we describe the related work.
Then, the working of Fuzz-Fortuna is explained in detail. It
is followed by a detailed analysis and results of tests done
on the output of the developed system. The results prove our
assertion about the robustness and improved performance of
our proposed technique.

II. RELATED WORK

A lot of work has been done in the field of random number
generation. The proposed algorithms and implementations are
too many to list. The most simple and easy to implement
PRNGs are based on linear shift registers. Examples of such
PRNGs are the Lagged Fibonacci Generator[2] (used in MAT-
LAB) and Blum Blum Shub[3]. [4] describes the operation
of Mersenne Twister(MT) RNG. MT is a 623 dimensionally
equidistributed PRNG. An improved version of MT is the
SIMD-oriented Fast Mersenne Twister algorithm given in [5].

The number of algorithms specifically designed for gener-
ation of cryptographically secure pseudorandom numbers is
relatively few. An important PRNG employing hashing and
encryption techniques is the Yarrow algorithm [6]. This work
is based on the software and hardware implementation of
Fortuna algorithm by [7]. In that work, the authors have shown
results which prove the effectiveness of the Fortuna algorithm.
However, the work lacks an adaptive algorithm for the process
of reseeding in the generator core. Our work is an effort
towards solving this problem.

III. THE FUZZ-FORTUNA MODEL

Fuzz-Fortuna comprises of four parts: an entropy accumu-
lator, a generator core, a system for seed file management



and a fuzzy inference system for controlling the frequency
of reseeding operation. The first three parts are same as the
original fortuna model described in detail in [7]. However,
they are briefly described here for continuity. The fourth part,
Fuzzy Inference System is the new proposed addition which
implements the adaptive algorithm for controlling of reseed
operation.

Fig. 1. Fuzz-Fortuna Model

A. Entropy Accumulator

The purpose of an accumulator is to store the truly random
data obtained from the entropy sources and use it in reseeding
operation to make the state of the system undeterministic. The
security of the system lies on the observation that the system
will remain secure (unpredictable by an attacker) as long as
at least one active source of entropy is not controlled by the
attacker.

Pools are used for storing the random data accumulated.
Data gathered from random events from the entropy sources is
uniformly and cyclically distributed amongst 32 pools, labeled
P0, P1, ..., P31 respectively. To store data of variable length in
the pool of constant size, we use a special hashing algorithm
known as SHA-256 hash function[8], thereby maintaining a
constant pool size of 32 bytes. When pools have accumulated
enough random data, the generator can be reseeded.

The process of choosing pools to provide data for reseed is
as follows. A counter data run tracks the number of times
the generator has been reseeded from the pools. This counter
determines which pools will be used in the current reseed,
i.e. pool Pi will be included in the reseed if i + 1 divides
data run. Hence, P0 is included in every reseed, P1 in every
second reseed, and so on. This results in some pools being
less used in reseed, thus storing greater entropy.

B. Generator

The generator consists of a block cipher (AES-256 [9]) used
for encryption. The block cipher takes a 256 bit up-counter as
input, a 256 bit random key from accumulator and produces
a 256 bit PN sequence at its output. The output of generator
is also fed back as new random key if reseeding needs to be

done but the accumulator pools do not have enough random
data for reseeding operation. The data would have a period
of 2256 if reseeding is done after the counter has overflowed.
Since periodic data is not secure, the generated data is limited
by a maximum limit of key oldness using the fuzzy inference
system. The generator changes the key or reseeds from the
pools if the fuzzy inference system (FIS) determines that the
key is too old or the entropy level of pools is quite high.

C. Seed File Manager

To make sure, that the generator always starts from an
unpredictable state, a seed file is used to reseed the generator.
The system periodically saves the seed file, thus maintaining it
in an unpredictable state for future use. The seed file manager
takes care of reading from seed file, writing to seed file and
saving the seed file.

D. Fuzzy Inference System

A novel fuzzy algorithm has been developed in this paper
which provides an adaptive method of reseeding the generator
core according to the random data supplied by the environ-
ment. The fuzzy model was built and tested using MATLAB.
The generated FIS was exported as .fis file and used in the
software implementation using the header files provided by
MathWorks. The details of the fuzzy inference system (FIS)
are given below.

1) Type of FIS: Sugeno fuzzy model is used in this system.
The Sugeno model is used because it is simpler in operation
and it provides a continuous output control surface. The first-
order Sugeno system is used. This means that the output is
determined using a first order polynomial. The defuzzification
method chosen is the weighted average method. This method
is represented by the following formula:

z =
∑

i wizi∑
i wi

(1)

where wi are the weights representing the strength of fired
rules and zi are the results of the first order polynomial
function.

Fig. 2. Fuzzy Model

2) Inputs of FIS: The proposed fuzzy model takes
two inputs, Pool Entropy (data rate) and Key Oldness
(key oldness). The variable data rate represents the rate
at which data is currently being gathered from the random
sources available. The variable key oldness represents the



number of times the 256-bit random output blocks have
been generated by the generator core. There are three input
membership functions (Low, Medium and High). These two
inputs are continuously calculated by the generator core and
passed onto the fuzzy inference system.

Fig. 3. Membership Functions for inputs

3) Output of FIS: The proposed fuzzy model gives a
single output known as Reseed. When this output exceeds
a threshold value, the reseeding process is done. There are
five output membership functions (Very Low, Low, Medium,
High and Very High). The membership functions of the output
are defined by the following first order equations (where x
is the input variable ‘PoolEntropy’, y is the input variable
‘KeyOldness’ and z is the output variable ‘Reseed’):

TABLE I
EQUATIONS FOR OUTPUT ‘RESEED’

Membership Function Sugeno Polynomial
Very Low z1 = 0.1x + 0.2y + 0.0

Low z2 = 0.2x + 0.2y + 0.2
Medium z3 = 0.3x + 0.3y + 0.4

High z4 = 0.2x + 0.2y + 0.4
Very High z5 = 0.1x + 0.1y + 0.8

4) Rule base: The rule-base of the system consists of 9
rules. These rules have been built using intuition. The rules in
the matrix form are shown below.

Fig. 4. Rule Base

5) Surface Plot: The Surface plot of the fuzzy inference
system is shown below. It shows that the fuzzy system is
continuous and behaves as expected.

Fig. 5. Surface Plot

IV. ENTROPY SOURCES

Fuzz-Fortuna can accommodate up to 256 sources of en-
tropy. In this implementation, we have used three entropy
sources which are commonly available to all PC users.

The rate at which data is obtained from these sources is
calculated by the following formula:

data ratenew = α× data rateprevious + (1− α)×Nb (2)

where Nb represents the number of bits obtained in the current
run of the data gathering algorithm. The constant α is used
to smooth the change in data rate. The typical value of α
lies within the range 0.80-0.95 and is chosen on experimental
basis.

The details of random sources used and analysis of the data
obtained is given below.

A. Cursor Movement

Mouse is a commonly available device. It is a very low
entropy source, and only the least significant bit can be
considered unpredictable by the attacker[10]. The position of
the cursor is defined in the Windows API as a structure of two
long integers, x and y. The range of these values depend upon
resolution of the screen. We used the resolution of 1024x768
on a 14 inch screen. We gathered and plotted different number
of bits but the results for histogram and auto-correlation were
best for the least significant bit of the x and y position as
shown by the following figures. The data from cursor position
is gathered only as long as it keeps moving. If the mouse stops
for a certain amount of samples, it is not used as source until
the cursor moves again.

B. Keystroke Timings

By sampling keystrokes every millisecond, we can get
random data from the keystroke timings, ascii codes and
scan codes of the keys pressed. However, only the two least
significant bits of the keystroke timings are taken as random
data, as they provide data with a uniform distribution.



Fig. 6. Histogram and Auto-Correlation of Mouse Movement

C. Soundcard Noise

As mouse and keyboard require a user and are easily
susceptible to an attack, the soundcard noise provides the
complementary entropy source. In this implementation, a
RealTek High Definition Audio soundcard was used. Eight-
bit samples were taken at a sample rate of 800 samples per
second. We gathered and plotted different number of bits but
the results for histogram and auto-correlation were best for the
two least significant bits of the obtained data. These results are
shown in the following figures.

Fig. 7. Histogram and Auto-Correlation of Soundcard Noise

Data is gathered and concatenated after one second interval.
The data full of entropy is then fed into the pools to increase
their entropy.

V. THE FUZZ-FORTUNA IMPLEMENTATION AND
ALGORITHM

The Fuzz-Fortuna algorithm has been implemented in C++
language using MS Visual C++ 6.0 and MATLAB v.7.0. The
pseudocode of the algorithm used in this implementation is
given below.

VI. RESULTS

The FuzzFortuna implementation resulted in a 696 KB
executable. We were able to obtain a data rate of 8.42Mbps
on PC with processing power of 3.2 GHz and 1 GB RAM.
To test the quality of random numbers generated by our
implementation, we tested it using various methods which are
described below:

A. Diehard Test Suite

Among the test-suites available on the World Wide Web for
testing data for it randomness, Diehard test suite [11] is the
most popular choice. Diehard test suite consists of 19 tests
of randomness which can be performed on at least 12MB of
data.

Algorithm VI.1: FUZZFORTUNA(seedfile)

procedure INITIALIZEPRNG()
global Pools, Counter, PoolEntropy,KeyOldness

procedure READSEED()
seed← seedfile
return (seed)

procedure WRITESEED(seed)
seedfile← seed

procedure RUN AES(value)
encrypted← AES ENCRYPTION(value)
return (encrypted)

procedure AES UPDATEKEY(key)
AESkey ← key

procedure AES COUNTER(counter)
RandomData← RUN AES(counter)
counter ← counter + 1
KeyOldness← KeyOldness + 1
return (RandomData)

procedure GETRANDOMSOURCES()
Pools← randomdatafromsources
PoolEntropy ← size(datafromsources)

procedure RESEED()
if PoolEntropy ≥ size(seed)

then

AES UPDATEKEY(seedFromPools)
PoolEntropy ← PoolEntropy − size(seed)
KeyOldness← 0

else
{

AES UPDATEKEY(seedFromOutput)
KeyOldness← 0

procedure RUN FIS(PoolEntropy, KeyOldness)
local ThresholdV alue
Reseed← FIS(PoolEntropy, KeyOldness)
if Reseed ≥ ThresholdV alue

then RESEED()

main
global RandFile, RandFileSize,ReqSize
local seed, randdatablock
INITIALIZEPRNG()
RandFileSize← 0
seed← READSEED()
RESEED(seed)
randdatablock ← AES COUNTER(counter)
WRITESEED(randdatablock)
while RandFileSize < ReqSize

GETRANDOMSOURCES()
randdatablock ← AES COUNTER(counter)
RandomFile← RandomFile&randdatablock
RUN FIS(PoolEntropy, KeyOldness)

return (RandomFile)



Diehard suits tests the statistical properties of generated data
and compares them with the well established properties of true
random data to give a measure of randomness of data. Each
test returns P-values measuring the probability that a sample
of the test data disagrees with the Null Hypothesis Ho that the
test data has a particular distribution D. The P-values of zero
or one for any test indicate that the tested data is not random.
In order to compare Fuzz-Fortuna with the Fortuna algorithm
implementation by [7], we use the scoring scheme by Johnson
[12] which was also used by them. The scoring scheme as well
as the results obtained are listed in the following tables.

TABLE II
DIEHARD SCORING SCHEME

P-Value Label Score
0 < p < 0.95 Good 0

0.95 ≤ p < 0.998 Suspect 2
p ≥ 0.998 Bad 4

TABLE III
SCORE COMPARISON FOR DIFFERENT RNGS

RNG Score
‘Mother’ 20

True (TRNG) 22
FuzzFortuna 20

Fortuna 24
32-bit LFSR 162

EQG 288
LFSR 756

Maximum (worst) possible score 876

The improvement in the quality of random numbers gener-
ated by Fuzz-Fortuna over that of Fortuna indicates that the
proposed algorithm is a better choice.

B. Entropy Calculation

To calculate the entropy content of the generated data, we
used a program called ‘ENT’ [13]. ENT applies various tests
to sequences of bytes stored in files and reports the results of
those tests. The program is useful for evaluating pseudoran-
dom number generators for encryption and statistical sampling
applications, compression algorithms, and other applications
where the information density of a file is of interest.

We got following results when ENT was applied to gener-
ated data in byte mode.
Entropy = 7.999996 bits per byte.
Optimum compression would reduce the size of this 41943040
byte file by 0 percent.
Chi square distribution for 41943040 samples is 233.12, and
randomly would exceed this value 75.00 percent of the times.
Arithmetic mean value of data bytes is 127.5079 (127.5 =
random).
Monte Carlo value for Pi is 3.141224970 (error 0.01 percent).
Serial correlation coefficient is 0.000091 (totally uncorrelated
= 0.0).
These results prove the effectiveness and high quality of
random data generated by our generator.

C. Compression Tests

When a data contains patterns, it can be compressed using
data compression schemes. A truly random data should not be
compressible. To check for this property, we used a very pop-
ular compression software ‘WinRAR’ in its ‘best’ compression
mode. WinRAR ‘compressed’ our 40 MB random data file in
to 40.1 MB file which shows that the data file is completely
uncompressible and the generated data is truly random.

VII. CONCLUSION AND FUTURE WORK

This paper has presented the concept and implementation of
fuzzified version of a cryptographically secure pseudorandom
number generator namely Fuzz-Fortuna (originally known as
Fortuna). The detailed analysis and results of tests done on
the output of the developed system have been discussed.
The results strengthen our assertion about the correctness and
robustness of our proposed technique. The improvement in
quality of generated random numbers certainly makes our
proposed algorithm superior to the ordinary Fortuna algorithm.

In future, we look forward to adding more random entropy
sources to the system, including those that are already being
used for generation of random numbers by the /dev/random
device in the linux operating system. Fortuna is already being
used as the preferred algorithm for /dev/random device. We
plan to present Fuzz-Fortuna as a replacement algorithm. The
hardware implementation of Fuzz-Fortuna for use as random
data source in custom designed chips is also an important goal.

REFERENCES

[1] N. Ferguson and B. Schneier, Practical Cryptography, Wiley
Publishing Inc., 2003

[2] M. Mascagni, S. Cuccaro, D. Pryor and M. Robinson, A Fast,
High Quality, and Reproducible Parallel Lagged-Fibonacci
Pseudorandom Number Generator, Journal of computational
physics, vol. 119, no. 2, pp. 211-219, Elsevier, 1995.

[3] L. Blum, M. Blum and M. Shub, A Simple Unpredictable
Pseudo-Random Number Generator, SIAM Journal on Com-
puting, vol. 15, pp 364, SIAM, 1986.

[4] Makoto Matsumoto and Takuji Nishimura, Mersenne Twister:
A 623 dimensionally equidistributed uniform pseudorandom
number generator, ACM Transactions on Modelling and Com-
puter Simulations, January 1998

[5] Mutsuo Saito and Makoto Matsumoto, SIMD-oriented Fast
Mersenne Twister: a 128-bit Pseudorandom Number Gener-
ator, MCQMC 2006

[6] John Kelsey, Bruce Schneier, and Niels Ferguson, Yarrow-160:
Notes on the Design and Analysis of the Yarrow Cryptographic,
Sixth Annual Workshop on Selected Areas in Cryptography,
Springer Verlag, August 1999

[7] Robert McEvoy, Fortuna: Cryptographically Secure Pseudo-
Random Number Generation In Software And Hardware, ISSC
2006

[8] NIST, Secure Hash Standard, FIPS PUB 180-2, 2002
[9] NIST, Advanced Encryption Standard, FIPS PUB 197, 2001

[10] T. Matthews, Suggestions for Random Number Generation in
Software, RSA Laboratories Bulletin #1. RSA Labs, Jan. 1996

[11] G. Marsaglia, Diehard Battery of Tests of Randomness,
http://stat.fsu.edu/pub/diehard/

[12] B. C. Johnson, Radix-b-extensions to some common empiri-
cal tests for pseudorandom number generators, ACM Trans.
Model. Comput. Simul., vol. 6, no. 4, pp. 261-273, 1996

[13] John “Random” Walker, ENT: Entropy calculation
and analysis of putative random sequences,
http://www.fourmilab.ch/random/


