
THE DROIDKNIGHT: A SILENT GUARDIAN FOR THE ANDROID KERNEL, HUNTING FOR ROGUE SMARTPHONE MALWARE APPLICATIONS1

The DroidKnight: a silent guardian for the
Android kernel, hunting for rogue smartphone

malware applications
M. A. Akbar, Farrukh Shahzad and Muddassar Farooq

Abstract

Smartphone devices have become an important enabler for providing m-services in a ubiquitous
fashion; as a result, malware attacks on smartphone platforms have significantly escalated. Since the users
are using smartphones for m-commerce based financial transactions (and also store sensitive personal data
on them); therefore, they must be protected against the rising threat of m-malware. In this paper, we present
a realtime malware detection framework for Android platform that performs dynamic analysis of smartphone
applications and detects the malicious activities through in-execution monitoring of process control blocks
(PCB) in the Android kernel. A novel scheme is utilized to mine the hidden execution patterns - from time-
series PCB logs of Android applications - by using information theoretic measures, frequency component
analysis and statistical analysis techniques. With the help of this novel scheme, the framework sits in the
Android kernel as a loadable kernel module and is able to detect real world malware applications for Android
with low false alarms. We have validated the framework using real world Android malware (from well-known
malware repositories) and popular benign applications taken from Google’s official app store for Android i.e.
Google Play Store. By carefully designing a series of experiments, we evaluate the detection and runtime
performance of DroidKnight. It is able to detect zero-day (previously unseen) malicious applications with
over 90% accuracy, while keeping the false positive rate below 3%. Its runtime processing overhead is less
than 4% on a low-end smartphone. Android kernel deserves such a silent guardian and a watchful protector
for the Android users against mobile malware. The framework is generic and could be easily adapted to any
Linux based mobile platform.

F

1 INTRODUCTION

Smartphones are becoming an important enabler for enhancing efficiency and effectiveness of
users by providing them the ability to remain connected with the m-services in a ubiquitous fash-
ion. This connectivity makes them an important tool of modern m-business and m-transaction
frameworks. The users do internet surfing and emails and remain connected on the social
networks. The findings of a recent survey are: in the first quarter of 2013, the smartphone market
has increased to 50% of the total mobile phone market [1].

Most smartphones come with their dedicated operating system that allows freelance develop-
ers to develop third party useful applications that users can download. Recently, Android OS
of Google, has revolutionized the smartphones by capturing more than 74% of the market. This
popularity, however, has attracted the attention of intruders as well. They are writing malicious
applications that users are tricked to download and install by exploiting social engineering
techniques. It has been reported that more than 175, 000 Android malware existed in Sep 2012
[2]. A number of signature-based anti-malware solutions are available for Android platform

• Farrukh Shahzad (corresponding author – farrukhshahzad0@yahoo.com) is with FAST National University of Computer and Emerg-
ing Sciences, A.K. Brohi Road, H-11/4, Islamabad. M. A. Akbar and Muddassar Farooq ({ali.akbar, muddassar.farooq}@nexginrc.org)
are with the Next Generation Intelligent Networks Research Center, Institute of Space Technology, Islamabad, Pakistan.



THE DROIDKNIGHT: A SILENT GUARDIAN FOR THE ANDROID KERNEL, HUNTING FOR ROGUE SMARTPHONE MALWARE APPLICATIONS2

[3]. It is a well known fact that static signature based systems can be evaded by employing
simple obfuscation techniques. In comparison, dynamic non-signature based techniques suffer
from small detection accuracy, large false alarm rate and large detection delay. In case of smart
phones, dynamic techniques have to overcome another challenge: limited availability of battery,
memory and computing resources.

In this paper, we present an initial prototype realtime tool – The DroidKnight – that applies
time series analysis on the features extracted from the Process Control Block (PCB) of a pro-
cess. The tool employs information theoretic analysis on logged time-series features, followed
by segmentation and frequency component analysis, to detect Android malware. To validate
the proof-of-concept, we have collected 50 benign and 50 malware Android applications from
Android store. The results of experiments indicate that the framework is able to detect unseen
malware with more than 90% accuracy and less than 3% false alarm rate. The system degrades
the performance of a low-end Android phone by 4% only.

1.1 Organization of the Paper
The rest of the paper is organized as follows. The characteristics of benign and malware datasets
are explained in Section 2. In Section 3, the major components of proposed framework are
presented and the working of each component is discussed. The performance evaluation of the
framework is presented in Section 4. Finally, we conclude the paper with an outlook to the future
work.

2 ANDROID - MALWARE & BENIGN DATASETS
The credibility and reliability of any intelligent malware detection system is directly dependent
on the quality of malware dataset. We have selected well known and representative applications
– 50 malware and 50 benign – to train the DroidKnight system. In Table 1, the short listed benign
and malicious applications are tabulated.

2.1 Benign Dataset
The top featured applications at Google Play Store for Android are selected as benign applica-
tions1. A good mix of different categories – Games, Image Viewers, Sketching tools, Text Editors,
Image Editors, Android Utilities such as Recorder, Dialer, Maps etc., and Misc. applications –
is selected from the month of August 2012. Special efforts are made to ensure diversity and
maintain balance between user-interactive and background applications.

2.2 Malware Dataset
We took malware samples for Android from a publicly available collection of Android malware
site – Contagio Mobile Malware Mini Dump2 – because COTS AV companies were unwilling to
share their datasets. The selected malicious applications belong to Trojans, Adware, Rootkits, Bots
and Backdoors categories. The category of ”trojan/spyware” Android applications dominate our
malware dataset. Most trojans apparently behave like benign applications and malicious activity
covertly happens in a trojan code inserted in a game.

2.3 Creation of Training & Testing Datasets
In order to have rigorous and stress evaluation of the DroidKnight, it is evaluated by using
10-fold cross validation methodology. In this methodology, ten training and testing combinations
are created. The DroidKnight is trained on 90% of the samples and tested on the remaining 10%
of the samples.

1. https://play.google.com/store
2. http://contagiominidump.blogspot.com/



THE DROIDKNIGHT: A SILENT GUARDIAN FOR THE ANDROID KERNEL, HUNTING FOR ROGUE SMARTPHONE MALWARE APPLICATIONS3

TABLE 1
List of Benign and Malicious Apps in Collected Dataset

Benign Apps Malicious Apps
magic.solitaire po.drawinggame2 DouglaLeaker-sirodougamatome-2 oid.computerlab
mes.penguinfree q.jacobras.notes DouglaLeaker-tubedougamatome-5 om.button.phone
my.handrite r.background.hd DouglaLeaker-uubedougamatome-1 ont thouch lite
n.droidhen.car3d r.km.draw.sketch.txt e.VoiceChangeIL oregame.drakula
ndroid.bestapps reebanana.notes easy.jewels.Gel per.Client.Game
ndroid.calendar rks.ImageViewer enkov.protector per.mobi.eraser-3600
ndroid.settings roid.app.camera er.android.main pl.byq.new
nerking.pinball roid.breakblock etagmedia.metro Plankton-c.livewallpaper
nsweringMachine rzysiek.afc.iqt Fake-token.A–token.generator Plankton-com.p1.chompsms
o.game.forestman s.noteeverything il.co.egv Plankton-lsuebutterflies
o.perfectviewer s.PicassoMirror Instagram-are.app Plankton-SawPuzzle.Tales
odle.restaurant s.unblockmefree isarun.Ipad2App Plankton-SkatingMadnessP
om.dreamhawk.ea simple.a Loozfon-fa.lin.ero Plankton-zoric.celebrity
om.game.BMX Boy space.fliqnotes Loozfon-ll.ap.ken reenguru.finger
ord.game.bubble ssoft.trialdemo m.mediawoz.gotq-2-Dup roid.liveprintsliveprints–livewallpaper
otesclassiclite tems.Super Note m.mediawoz.gotq rootsmart-e.android.smart
otificationnote tjsp.memowidget m.safesys.myvpn sileria.alsalah
otoxmayhem1lite torultimatefree m.space.sexypic SMSZombie-aper.livepicker
oumiak.desknote uicknotes.views mannd.sdbooster SMSZombie-com.gmdcd.pic
ovio.angrybirds ulmach.textedit mes.droid.mhunt SMSZombie-com.hxmv696.pic
ox.notepad.free ung.app.fmradio miniarmy.engine SMSZombie-com.ldh.no1
oy.sketchmovie1 usoft.punchmemo nstantheartrate SMSZombie-com.lzll.pic
p.game.vszombies w.jsimagefinder nwhy.WhackAMole SMSZombie-com.xqxmn18.pic
p.voicerecorder x.android.sketch oid.afdvancedfm-2150 SMSZombie-om.zqbb1221.pic
ping.lifequotes cing.spades ads oid.afdvancedfm-2200 yen273.app2card

Kernel Space

Execute App

Kernel PCB 

Structures for 

Task Created

Features 

Logger – logs 

all features

Voting based 

decision

Features Analyzer – 

performs shortlisting, 

transformation and 

statistical analysis

Alarm
Classification

Fig. 1. Block diagram of the Malware Detection Framework’s Architecture

3 MALWARE DETECTION FRAMEWORK

In this section, we present the architecture of the DroidKnight. To mine the difference in execution
patterns, the framework accumulates the variance of time varying features of a process control
block (typically referred to as Task Structures (task_struct) in Linux/Anroid).

The Binder Inter Process Communication (IPC) mechanism sends a message to the Zygote
process – a special process that is an instance of Dalvik VM with core libraries loaded as read-
only – when a new application is started on an Android phone. The Zygote process forks a new
process to launch a new application in a new Dalvik VM without the need to copy the shared
core libraries [4]. During a fork call, the kernel creates a child process and adds its process
control block (task_struct) to a doubly linked circular linked list. The processes from this list
are scheduled in a round robin fashion by sharing the time of a processor.



THE DROIDKNIGHT: A SILENT GUARDIAN FOR THE ANDROID KERNEL, HUNTING FOR ROGUE SMARTPHONE MALWARE APPLICATIONS4

The framework runs in the kernel space as a (Loadable kernel module) LKM and root priv-
ileges are required to load and execute it. The kernel module is compiled and tested on a
Samsung Galaxy Young device with Android Gingerbread distribution (Android 2.3.6, Kernel
version 2.6.35.7). The architecture of DroidKnight is shown in Figure 1 and it consists of three
modules: (1) features logger, (2) features analyzer and processor, and (3) classification engine.
Now we explain the functionality of each component.

3.1 Features Logger
The feature logger is implemented as LKM and it periodically stores the fields of the task_structs
of different running processes. It selects only 32 features from 99 fields available in task_struct
of a process in Android kernel.

3.2 Features Analyzer
The features analyzer and processor removes redundant values of a feature and applies time-
series Discrete Consine Transform (DCT) on the short-listed features. It also accumulates variance
of the extracted features that are useful in identifying hidden patterns. It applies the following
five steps to extract hidden information from the logged time series features: (1) analyze the
extracted features, (2) filter relevant features only, (3) remove redundant features, (4) create win-
dows (batches) of fixed time intervals, (5) apply different time series transforms, and (6) finally,
calculate the statistical features – capable of detecting mobile malware – from the transformed
dataset.

3.3 Classification Engine
After accumulating the variance of frequency components of current time-series segments that
model the execution behavior of a process, the machine learning classifier is delegated the task
to build benign and malware models. The next step is to select an appropriate machine learning
classifier.

In order to systematically analyze the features’ set, Information Gain (IG) and Information
Gain Ratio (GR) of extracted frequency components of selected features are plotted in Figure
2. It is clear from the figure that selected features have high information gain and information
gain ratio. It is a well known fact that for such a features’ set, decision tree classifiers such as
J48 appears to be a suitable candidate. Moreover, the authors of [5] have concluded that J48 is
resilient to class noise because it avoids over fitting during learning and also prunes a decision
tree for an optimum performance (a characteristic desired in resource constrained smartphones).

3.4 Voting Method & Alarm
The classifier gives Benign|Malicious decision, after analyzing the accumulated variance of the
frequency components in each time-series segment. The majority voting method is used to
classify an executing application: if more than half of segments are declared malicious in a
window of consecutive segments, the application is declared as malware and is killed; otherwise,
the application is allowed to execute.

4 PERFORMANCE EVALUATION

Now we report the accuracy of DroidKnight tested on a dataset consisting of 50 benign and 50
malicious real-world Android applications.



THE DROIDKNIGHT: A SILENT GUARDIAN FOR THE ANDROID KERNEL, HUNTING FOR ROGUE SMARTPHONE MALWARE APPLICATIONS5

0 5 10 15 20 25 30 33
0

0.2

0.4

0.6

0.7

Features

In
fo

rm
at

io
n 

G
ai

n

(a) Information Gain

0 5 10 15 20 25 30 33
0

0.2

0.4

0.6

0.7

Features

G
ai

n 
R

at
io

(b) Information Gain Ratio

Fig. 2. Information Theoretic Analysis of Frequency Components Related to Shortlisted Features
Set

4.1 Classification Performance
In a typical two-class problem, such as detecting a process as malicious or benign, the classifica-
tion decision may fall into one of the following four categories: (1) true positive (TP), classification
of a malicious process as malicious, (2) true negative (TN), classification of a benign process
as benign, (3) false positive (FP), classification of a benign process as malicious, and (4) false
negative (FN), classification of a malicious process as benign. The classification performance is
measured using two standard parameters: (1) Detection Rate (DR = TP

TP+FN
), (2) False Alarm

Rate (FAR = FP
FP+TN

).
As mentioned in Section 2, 10 different training and testing datasets are generated. The results

strongly indicate that the framework can detect unseen malware applications on Android with a
detection rate of more than 90% and a false alarm rate of less 3% on the average. This means that
the framework detected at least 8 − 9 out of every 10 randomly chosen malware applications.
Similarly 2-3% benign applications (randomly chosen) might be classified as malware. This
proves our thesis that accumulating the variance of the fields of a process control block and
applying time series analysis on them provides the ability to distinguish a malicious application
from a benign application.

In these experiments, we have used a time resolution (the time interval after which values
of parameters in the process control block structure of a process are logged) of 10ms, and a
voting window size of 30 consecutive segments. These values are empirically chosen to optimize
performance in terms of DR and FAR.

4.2 Performance Overhead
DroidKnight will never be used by Android users if its running overhead hampers their usability
experience. In order to analyze the performance overhead, the experiments are performed on a
Samsung Galaxy Young S5360 device with an 832 MHz ARMv6 processor, 290 MB RAM and
160 MB built-in storage. (Such a low end device was deliberately selected.)

We have created a mix of customized Android applications that are CPU-intensive and I/O-
bound; while others are a combination of both. The memory requirements for applications vary
as well. These operations include running different algorithms for compressing files, copying
a file (folder) to another location and doing text search within a file. Four different folders,
containing different files (total folder size: 425 MB, 500 MB, 850 MB and 1275 MB,) have been



THE DROIDKNIGHT: A SILENT GUARDIAN FOR THE ANDROID KERNEL, HUNTING FOR ROGUE SMARTPHONE MALWARE APPLICATIONS6

TABLE 2
System Performance Degradation Analysis on Android

Application Baseline Exec. Exec. Time with Overhead
Time (s) our framework (s) (%)

Zip (Archive) 127.2 131.5 3.27
Zip (Best Compress) 67.86 69.94 2.97
Zip (Best Speed) 50.39 52.01 3.11
Zip (Deflated) 132.12 141.81 6.83
Zip (Filtered) 147.59 154.27 4.33
File Copy 190.6 196.95 3.22
File Search 131.68 134.91 2.4
Average 3.73

used as input to these applications. The average performance degradation is reported in Table
2. It is apparent that an average performance overhead of (4%) will not degrade the usability
experience significantly.

5 RELATED WORK

To the best of our knowledge, no dynamic non-signature based technique exists in the literature
that tries to apply the concept of ”accumulating the variance of information in the fields of
task_struct of an Android kernel. For completeness, we just discuss most relevant techniques.

Dini et al. have presented a multilevel anomaly detection technique for detecting Android
malware (MADAM) [6]. The proposed framework operates in the kernel and the user space
simultaneously and is capable of detecting previously unseen, zero-day malicious applications.
A rich feature set is derived due to a multilevel view of the system events in both spaces. The K-
nearest neighbors (KNN) algorithm is then applied during classification process. The operation
of the framework can be divided into training, learning and operation phases. The machine
learning classifier can adapt to new changes by incorporating new feature vectors in training
and learning set at run-time. An average detection rate of 93% along with an average false
positive rate of 5% is reported for a very small dataset.

Android Application SandBox framework is proposed in [7] for malicious software detection on
Android. This framework first performs static analysis of user applications. The applications
are then transmitted to a remote server that executes them in the sandbox. Then it performs
clustering and does analysis of the generated logs to detect malicious patterns. The dataset used
for testing Sandbox is small and analysis of the time and memory overhead is also not included.
Another framework that uses a similar concept of decoupled security is an API based malware
detection system Paranoid Android [8].

Burguera et.al have developed a dynamic framework called Crowdroid which recognizes Trojan-
like malware. It takes into account the fact that genuine and trojan affected applications differ in
types and number of system calls during the execution of an action that requires a user’s inter-
action. The authors have reported results on a small dataset. The false-alarm rate is significantly
high (20%). The authors have not discussed the robustness of their features set [9].

Andromaly is another IDS which monitors both the system and user behavior by observing
several parameters, spanning from sensors activities to CPU usage [10]. The authors have de-
veloped four custom malicious applications to evaluate the ability to detect anomalies. They
have created four different training/testing scenarios and reported good detection accuracy.
Andromaly degrades performance of a smartphone by 10% with the malware detection time of
5 sec. Also, it is not evaluated over real world Android malware dataset.

To conclude, DroidKnight achieves not only high detection rate (more than 90%) but relatively
small FAR (below 3%) with only 4% deterioration in performance.



THE DROIDKNIGHT: A SILENT GUARDIAN FOR THE ANDROID KERNEL, HUNTING FOR ROGUE SMARTPHONE MALWARE APPLICATIONS7

6 CONCLUSION & FUTURE WORK

The major contribution of this paper is a dynamic malware detection tool (for Android smart
phones) – DroidKnight– which has the capability to detect mobile malware while it is still
executing. The proposed framework is lightweight with an average performance overhead of
less than (4%). The framework is evaluated on a real world dataset consisting of 50 benign and
50 malware Android applications. The reported experiments show that the framework is able
to achieve more than 90% accuracy and less than 3% false alarm rate. The framework can work
with a number of existing solutions to provide a robust solution against rootkits.

In future, the plan is to build a formal mathematical model of ”accumulative variance” and
use it to further enhance the accuracy of DroidKnight and lower its FAR. Another direction for
work is: to evaluate it on a larger dataset that consists of more than 100 benign and 100 malware
applications. This will be the subject of forthcoming applications.

Acknowledgments
The work presented in this paper is supported by the National ICT R&D Fund, Ministry of
Information Technology, Government of Pakistan. The information, data, comments, and views
detailed herein may not necessarily reflect the endorsements of views of the National ICT R&D
Fund.

REFERENCES

[1] Gartner, “Gartner says asia/pacific led worldwide mobile phone sales to growth in first quarter of 2013,”
http://www.gartner.com/newsroom/id/2482816 [last-viewed-June-3-2013], 2013.

[2] Trend-Micro, “3q 2012 security roundup: Android under siege: Popularity comes at a price,” Research and Analysis, 2012.
[3] S. HILL, “Top 3 android security apps, do they protect you?” http://www.digitaltrends.com/mobile/top-android-security-apps/(last-

viewed-on-December-10-2012), 2012.
[4] D. Ehringer, “The dalvik virtual machine architecture,” Techn. report (March 2010), 2010.
[5] I. Witten and E. Frank, Data mining: Practical machine learning tools and techniques, second edition. Morgan Kaufmann, 2005.
[6] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra, “Madam: a multi-level anomaly detector for android malware,” in

International Conference on Mathematical Methods, Models and Architectures for Computer Network Security, 2012, pp. 240–253.
[7] T. Blasing, L. Batyuk, A. Schmidt, S. Camtepe, and S. Albayrak, “An android application sandbox system for suspicious

software detection,” in International Conference on Malicious and Unwanted Software (MALWARE). IEEE, 2010, pp. 55–62.
[8] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid android: Versatile protection for smartphones,” in

Proceedings of the 26th Annual Computer Security Applications Conference. ACM, 2010, pp. 347–356.
[9] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-based malware detection system for android,” in

Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile devices. ACM, 2011, pp. 15–26.
[10] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “Andromaly: a behavioral malware detection framework for

android devices,” Journal of Intelligent Information Systems, pp. 1–30, 2011.


